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ABSTRACT 

Compounds of the type ZPCRNCHjCH^N where Z = a lone pair are proving to be 

versatile reagents and catalysts for an ever increasing number of organic transformations. 

These properties stem from the extraordinary basicity and low nucleophilicity of the 

phosphorus atom when certain Z substituents induce the bridgehead nitrogen to transannuiate 

(even partially) to the phosphorus. 

In this work, several novel azaphosphatranes have been successfully synthesized and 

characterized, where R = a bulky group (R3Si) (lf-i, If and 2g in chapter 3), or a chiral group 

(5-7 in chapter 5). A stable polymer-based azaphosphatrane (4 in chapter 4) was also 

synthesized from a commercially available Merri field resin. In addition, the synthesis of 

commercially available PtMeNCHiCH^N (1 in chapter 1) was remarkably improved in 

terms of chemical cost, labor cost, yield, safety and preparation time. 

It has been found that the cations HP(CH3NCH2CH2)3N% HP(HNCH2CH2)3N<' and 

HP[N(polymer)CH2CH2lN(CH2CH2NHV (2,3 and 4 in chapter 4) serve as efficient 

procatalysts for dehydrohalogenation of organic bromides using NaH as a inexpensive 

stoichiometric hydride source in CH3CN at room temperature; that compound 6 in chapter 5 

is an efficient derivatizing agent for the direct determination of enantiomeric ratios of chiral 

azides by means of 3lP and 'H NMR spectroscopy; that N(CH2CH2NMe)3P=0 (3 in chapter 

7) is an efficient catalyst in a mild procedure for the silylation of primary alcohols, secondary 

alcohols, hindered secondary alcohols and of hindered phenols, in the presence of t-

butyldimethylsilyl chloride (TBDMSC1) and r-butyldiphenylsilyl chloride (TBDPSCl); and 

that P(MeNCH,CH,)3N (2a in chapter 8) functions as a highly selective reagent for providing 

epoxides with trans/cis ratios as high as 99/1. 

Cation [0=P(z-PrNCH2CH2)3CH3]> (3 in chapter 6) features the longest distance 

between the bridgehead atoms (3.56 Â) so far recorded for phosphatrane cages despite a non-

tetrahedral CNbridgebeadC angle (~114°). The 70.8° NbridgeheadCCN torsion angles in the bridging 



www.manaraa.com

vi 

moieties of 3 produce a substantial twist along the Ç, axis of the structure that does not easily 

allow racemization of the cage. 

Benzene is formed at room temperature under acidic conditions from the novel 

trisubstituted cyclohexane derivative 1 (in chapter 9). The dominant reaction in the 

decomposition of the isolable thermally stable Staudinger intermediate in the presence of HA 

is the formation of benzene, nitrogen and [H2N=PR3]A. 
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CHAPTER 1. GENERAL INTRODUCTION 

Dissertation Organization 

This dissertation consists of ten chapters. The first chapter is a general introduction 

containing a general review and a statement of the research project. The subsequent eight 

chapters represent research results that have been published or submitted for journal 

publication, except for Chapter 2 which discloses an invention submitted to Iowa State 

University Research Foundation (ISURF) as a Record of Invention. The numbering of 

compounds, figures, schemes, tables, and references are independent in each chapter. The 

last chapter is a summary of the results achieved and a prospective outlook for the 

proazaphosphatrane chemistry. All contributors to the work presented herein are 

acknowledged in each chapter and a general acknowledgment is given in the end of this 

dissertation. 

General Review and the Project Statement 

Phosphorus is very important to our world since it can be made into many useful 

products which are play critical role in our everyday life. For example, phosphorus is the key 

element in agriculture chemicals (such as insecticides and herbicides), medicinal compounds 

(such as anticancer, antiviral, and antibacterial agents), catalyst systems based on metal-

coordinated tertiary phosphines (for Oxo hydroformylation, olefin hydrogénation, and Reppe 

olefin polymerization), flame retardants (for fabrics and plastics), additives in the petroleum 

products, and etc.1 

Phosphorus chemistry started from the nineteenth century and has drawn increasing 

attention over time, especially from the beginning of twentieth century, accelerated by the 

pioneering work in the laboratory of Karl Arnold August Michaelis and in the school of 

Aleksandr Erminingel'dovich Arbusov. In the last few decades, this field has become an 
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international arena. Since the late 1970s, the chemistry of atranes of groups 13 to 15 has 

been extensively studied by the Verkade group and others because of their intrinsic interest 

and the potential use as precursors for metal and nonmetal nitrides for a variety of electronic 

applications and as hard-surface coatings for protection against corrosion and wear.2 In 

1989, the first proazaphosphatrane P(MeNCH2CH,)3N (la) was synthesized by the Verkade 

group.3 Following its synthesis, its analogues lb - d have been synthesized and fully 

characterized by this group.4-5 The unusual phosphorus basicity of proazaphosphoatranes is 

reflected in the protonation of proazaphosphatranes A to their conjugated acid form B. The 

driving force for this process is the formation of three stable five-member rings from two 

strained eight-member rings, which is accompanied by transannular interaction from the 

bridgehead N to the bridgehead P. 

Me 
i-Pr 
Et 

CHiPh 
CH2CHMe2 

CH2CMe3 

A B 

In recent years we have been exploring the chemistry of proazaphosphatranes such as 

la - f,2 6 some of which are proving to be exceedingly potent catalysts, promoters and strong 

nonionic bases that facilitate a variety of useful organic transformations. For example, la is 

an efficient catalyst for the trimerization of aryl and alkyl isocyanates that function as 

additives in the manufacture of nylon-6,7 for the protective silylation of a wide variety of 

sterically hindered and deactivated alcohols,8 and for the acylation of such substrates.9 

.N" 
F^N^R 

la 
lb 
lc 
Id 
le 
If 
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Proazaphosphatrane la is much stronger as a base than DBU,10 a commonly used nonionic 

base in organic synthesis. Thus it is a superior base for the synthesis of porphyrins," for the 

dehydrohalogenation of secondary and tertiary halides,12 and for the synthesis of a chiral 

fluorescence agent.13 As a result of such applications, la has become commercially 

available.14 Recently, we have discovered that la and lb are also efficient nonionic base 

catalysts fortransesterification,15 P-nitroalkanoI synthesis,16 Michael addtions,17 ^-hydroxy 

nitrile synthesis,18 and ^-unsaturated nitrile synthesis.19 

Encouraged by the promising results of the proazaphosphatrane chemistry, the goal of 

the present research is to develop new proazaphosphatrane systems. Thus, we were 

interested in (1) developing a more economical method for the synthesis of commercially 

available base la (presently $238/g), (2) synthesizing new proazaphosphatranes bearing 

bulky substituents or chiral groups, and also polymer-supported systems, (3) studying the 

properties and structural features of new systems, and (4) extending the application of 

proazaphosphatranes in organic synthesis. 

References 

1. a) Toy, A. D. F. Phosphorus Chemistry in Everyday Living American Chemical Society, 

Washington, 1976. b) Quin, L. D. A Guide To Organophosphorus Chemistry John 
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2. a) Verkade, J. G. Acc. Chem. Res. 1993, 26,483. b) Verkade, J. G. Main Group Chem. 
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CHAPTER 2. AN IMPROVED SYNTHESIS OF OUR PATENTED AND 

COMMERCIALLY AVAILABLE SUPERB ASE/CATALYST P(MeNCH2CH2)3N 

An invention disclosure submitted to ISURF for Patent Application 

Xiaodong Liu and John G. Verkade 

Abstract 

A new, easier and more economical method has been developed for the synthesis 

P(MeNCH2CH2)3N in three steps and in 68% overall yield. This compound is proving to be a 

versatile reagent and catalyst for an ever increasing number of organic transformations 

requiring extraordinary basicity and low nucleophilicity. 

Introduction 

Compounds of the type P(RNCH2CH2)3N where R = Me,1 PhCH2,2 Et,3 z'-Pr,3 

CHjCHMe,,45 CH2CMe3,4 are proving to be versatile reagents and catalyst for a variety of 

organic transformations. Compound 1 (Scheme I) first synthesized in our laboratories,1 

Scheme 1 

N-t^-NH=)3 — n4^NHM=)3 

rf— 
1 2 

a. CICOiEt, QjHe/HzO. 5°C/2 h, RT/8 h, 85%. b. LiAIH4, THF, reflux, 12 h. 88%. 

c. P(NMe2)3, PC13. CH3CN. RT, 6 h. 90%. d. KO-r-Bu, CH3CN, RT. L h, 82%. 
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possesses unusually high basicity and readily protonates to give cation 2 whose pK, in 

CH3CN is 32.9.* Thus for example, 1 acts as a strong nonionic base in stoichiometric 

reactions, such as synthesis of a fluorescence agent,7 porphyrins,8 olefins9 and mono-

alkylated active methylene systems.10 Compound 1 is also an efficient catalyst in alcohol 

acylation with anhydrides," protective alcohol silylation,12 isocyanate trimerization13 and in 

c^-unsaturated nitrile synthesis.14 It is noteworthy that 1 has been patented by the Du Pont 

Company15 and by the US Department of the Navy16 for the catalytic synthesis of Nylons and 

for propellant stabilization, respectively. Compound 1 is commercially available from Strem 

Chemical Co.17 

The present method for making 1 shown in Scheme 1 has disadvantages including 

long reaction time, labor intensiveness, and safety concerns resulting from the use of excess 

LiAlH4 in the reduction step. The overall yield in this four-step synthesis 55%. Thus, a more 

facile and economical method is desired. Here we report that 1 can be synthesized in 68% 

overall yield from (H,NCH,CH^N in a newly developed three-step procedure. 

The sequence of reactions starting with commercially available starting materials is 

shown in Scheme 2. The first step gives JCCFjCO^) in quantitative yield using our earlier 

method.2 The second step is the reaction of 3(CF3CC>2) with 3.1 equiv. of Me2S04 in the 

Scheme 2 

Results and Discussion 

N(CH2CH2NH2b 
VteS04 

3 

a. CF3C02H. FXNMe2)3. CH3CN, RT. 10 h, 99%. 

2 

b. 4.0 equiv NaH, 3.1 equiv Me2S04. CH3CN. 20°C, 10 h. 78%. 

c. 1.5 KO-f-Bu, THF, RT, 2 h, 88%. 
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presence of 4.0 equiv. of NaH in CH3CN at room temperature. After purification, the salt 2 

with a mixture of counter ions CF3C02" and MeS04" is obtained as a white crystalline solid in 

good yield (78%). Step 3 is carried out by our previous literature procedure.18 

The key step in Scheme 2 is the direct methylation of 3 to 2. In the present work, 

NaH deprotonates the N^-H groups stepwise upon which SN2 attack of the anionic nitrogen 

on the methylation reagent gives the methylated cage compound 2, as shown in Scheme 3. 

This reaction pathway was confirmed by monitoring reactions with31P NMR spectroscopy, in 

which the mono (2a) and di (2b) methylated intermediates were observed before 2 was 

formed as the final product. 

Scheme 3 

NaH, MezSCU NaH, Me2S04 

NaH, Me2S04 

excess MeiSOj 

When KO-f-Bu was used as the base in step 2, methylation was not clean. Thus 2,2a, 

2b and the phosphonium cation 4 formed as final products when 2 was reacted with 3.1 

equiv. of Me2S04in the presence of 4.0 equiv. of KO-r-Bu in CH3CN at room temperature. 

Excess NaH was used in our experiments to insure complete alkylation. However, it 

was found that NaH also deprotonates 2 to give 1, although much more slowly than the 

reaction involving KO-r-Bu, in which further reaction of 1 with Me2S04 to form 4 is 

observed. Thus, the amount of Me2S04 must be carefully controlled: too much results in the 



www.manaraa.com

8 

formation of undesired 4 and too little leads to incomplete methylation. Mel was initially 

used as the methylation agent but because of its low boiling point (42.5 °C), it was difficult 

to control the quantity of Mel added to the reaction mixture. The lower cost and higher 

boiling point (188 °C) of Me2S04led to its use in place of Mel. 

To reduce the cost of the chemicals, several cheaper acids, such as CH3C02H, HC1, 

CH3SO3H and CF3CO1H, were used in place of expensive CF3S03H. It was found that 

CH3C02H and CH3S03H gave impure product in low yields and HCl gave 3 as an insoluble 

product in CH3CN even though the yield was quantitative. With CF3C02H, pure 3 was 

obtained as the CF3C02 salt in quantitative yield and this salt had better solubility in CH3CN. 

With the use of this salt in step 2, the methylated product 2 was formed with a mixture of 

CF3C02 and Me SO/ anions in an approximately 1: 2 ratio based on MS(ESI) and 'H NMR 

results. It is noted that when 3(OTf) was used for the methylation step, only OTf was found 

in the methylated product. Concern that MeS04 would methylate 1 to 4 subsequent to the 

deprotonation step proved to be unfounded since no formation of 4 and 100% conversion of 

1 occurred. 

Step I and Step 2 of our procedure were carried out in CH3CN because of its 

excellent solvent properties for 2(CF3CO,, MeS04 ) and its ready removal under vacuum 

after the reaction. DMF was found to be a better solvent for the reaction involving NaH 

because of a faster reaction rate, but its high boiling point (153 °C) prevented easy removal. 

As stated in the Experimental Section, 3(CF3COI) reacts with 3.1 equiv. of Me2S04 in the 

presence of 4.0 equiv. of NaH using CH3CN as the solvent. After 10 hours at room 

temperature, a 100% conversion was obtained, 95% of which was desired product 2, with 2b 

and 4 being minor byproducts (<5%). After work-up and purification, 2(CF3C02", MeS04 ) 

was obtained as a white crystalline solid in 78% isolated yield. After deprotonation with 

KO-r-Bu, 1 was obtained as a white solid in 88% isolated yield (99% conversion). 
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Experimental Section 

All solvents were used as purchased unless stated otherwise and all reactions were 

carried out under argon. All other chemicals were purchased from Aldrich Chemical 

Company and were used without further purification. 'H and l3C NMR spectra were 

recorded on a Varian VXR-300 NMR spectrometer. 3lP NMR spectra were recorded on a 

Bruker WM-200 NMR spectrometer using 85% H3P04as the external standard. ESI mass 

spectra were measured using a Finnigan TSQ700 spectrometer. 

Synthesis of [HP(HNCH2CH^,N][CF3C02], 3(CF,CO:) To a 500 mL RB flask 

was added (H2NCH2CH2)3N (14.6 g, 100 mmol) followed by the addition of CH3CN (250 

mL). After flushing with Ar for about 10 min, the flask was placed in an ice water bath and 

the reaction mixture was magnetically stirred. After 5 min, P(NMe2)3 (16,3 g, 100 mmol) 

was syringed into the above solution. After stirring at room temperature for 15 min, a 

solution of CF3C02H (11.4 g, 100 mmol) in CH3CN (50 mL) was added to the solution. 

After further stirring at room temperature for 10 hrs, All volatiles were removed under 

reduced pressure, and hexanes (300 mL) were added. The product 3(CF3C02) was obtained 

as a white solid in quantitative yield upon filtration and drying in vacuum for 2 hrs. The 3IP, 

'H and 13C NMR data of the product were consistent with those in literature.2 

Synthesis of [HP(MeNCH2CH2)3N][CF3C02, MeS04 ], 2(CF3CO:, MeS04 ) In 

a glove-box, NaH (5.00 g, 200 mmol) was placed in a 1 L RB flask followed by the addition 

of CH3CN (400 mL). After flushing with Ar for about 10 min, 3(CF3C02) ( 14.5 g, 50.0 

mmol) was added, the flask was then placed in an ice water bath and the reaction mixture 

was magnetically stirred. After 5 min, Me2S04 (19.5 g, 155 mmol) in CH3CN (200 mL) was 

introduced to the above suspension over about 20 min. The suspension was continuously 

stirred and kept in the ice water bath until the ice melted and the water had warmed to room 

temperature. After 10 hrs of stirring at room temperature, 1.0 mL of H20 was added. After 

stirring at room temperature for 10 more min, all volatiles were removed by rotary 
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evaporation at below 50 °C, giving a brown to yellow solid which was then dissolved in 100 

mL of distilled water. To this aqueous solution was added 2.0 g of KOH, and then it was 

extracted with Et20 (3 x 200 mL) to extract organic impurities. NaCI was added to the 

resulting aqueous solution until some solid NaCI remained. Methylene chloride (5 x 200 

mL) was used to extract product from the aqueous phase, and the organic extracts were 

collected and dried over MgS04 (20 g). After filtration, the volatiles were removed by rotary 

evaporation, giving a yellowish solid which was dissolved in THF (40 mL) followed by 

precipitation with hexanes (300 mL). The final product was obtained as a white solid (13.0 

g, 78%) after recrystallization from THF (30 mL) and hexanes (30 mL) at -20 °C for 24 hrs 

and drying under vacuum at RT for 24 hrs. 31P, lH NMR and MS(ESI) spectra confirmed the 

identity and purity (98%) of the products.1 

Synthesis of P(MeNCH2CH2)3N, 1 To a 500 mL RB flask was added KO-r-Bu 

(6.55 g, 58.5 mmol) followed by the addition of dry THF (150 mL, distilled from Na). After 

flushing with Ar for about 10 min, a solution of2(CF3C02', MeS04 )(l3.0 g, 39.0 mmol) in 

dry THF ( 100 mL) was syringed into the above solution. After stirring at room temperature 

for 3 hrs, all volatiles were removed under reduced pressure followed by extraction with 

pentane (2 x 300 mL). Then all volatiles in the extracts were removed under reduced 

pressure, giving the product 1 as a white solid (7.41 g, 88%) upon sublimation (60 °C 10.2 

Torr). The 3IP, 'H and 13C NMR spectroscopic data were consistent with those in literature.1 

Acknowledgment The authors are grateful to the National Science Foundation for a grant 

in support of this research. 
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CHAPTER 3. SYNTHESIS AND STRUCTURAL FEATURES OF NEW 

STERICALLY HINDERED AZAPHOSPHATRANE SYSTEMS: 

ZP(RNCH2CH2),N 

A paper published in the Journal of Organometallic Chemistry, 1999,582, 16. 

Xiaodong Liu, Yuniu Bai and John G. Verkade 

ABSTRACT 

The synthesis of [ZP(RNCH2CH2)3N]CF3S03 wherein Z = H* and R = SiMe3 (If), 

SiEt3 (lg), SiPh3 (lh), SiPh2Me (li) and Li(lj) are reported along with that of 2f wherein Z 

= Ip and R = SiMe^ Also described are the transformations of lj to If-:, 2f to 

OP(Me3SiNCH2CH2)3N (3b), 5 to 3b, and 2f to SP(Me3SiNCH2CH2)3N (3a). The 

structures of 2f and 3a determined by X-ray means are also presented. Compound 2f 

displays a bridgehead-bridgehead distance of 3.360(7) Â while that in 3a is 3.152(7) À. The 

smaller distance in the latter by ca. 0.1 Â is attributed to the wider NPN bond angle by ca. 5° in 

3a. VT 3lP NMR studies revealed no evidence for transannulation or tautomerism in 3b. 

Keywords: azaphosphatrane, steric hindrance 

1. Introduction 

In recent years we have been exploring the chemistry of azaphosphatranes such as la-

e; particularly as it is related to the deprotonated parents of these cations, namely, their 

corresponding proazaphosphatranes 2a-e.[l-14J Some of these proazaphosphatranes are 

proving to be exceedingly potent catalysts, promoters and strong nonionic bases that facilitate a 

variety of useful organic transformations. For example, 2b is a superior catalyst for the 

trimerization of aryl and alkyl isocyanates to isocyanurates (equation 1) that are useful as 
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additives in the manufacture of Nylon-6.[l | Compound 2b is a superior catalyst for the 

H R 

R 

la H 2a 
lb Me 2b 
lc Et 2c 
Id i-Pr 2d 
le Bn 2e 
If SiMe3 2f 
lg SiEl3 2g 
lh SiPh3 

li SiPhiMe 

U Li 

%_t<NkR i= B : v^r 

U-J 

protective silylation of a wide variety of sterically hindered and deactivated alcohols,[121 and it 

is also an excellent promoter for the acylation of such substrates.[10) Proazaphosphatrane 2b 

is 17 pK units stronger as a base than DBU[2], a commonly used nonionic base in organic 

synthesis. Thus 2b has facilitated a substantial improvement in the synthesis of porphyrins,[5] 

for the dehydrohalogenation of secondary and tertiary halides[14| and in the synthesis of a 

chiral fluorescence agent.[15] As a result of these as well as currently emerging applications, 

2b has become commercially available.[16] 

0 

,h 
Ar-N^N'Ar 

3 A r N C O  •  I  I  ( I )  

O N^SD 1 
Ar 

All of these transformations are crucially dependent upon the ability of the bridgehead 

nitrogen in 2b to form a partial or full coordinate bond to the phosphorus.[17] In support of 

this hypothesis we observed, for example, that the acyclic analogue P(NMe2)3 is ineffective in 

all of the aforementioned reactions. 

The first proazaphosphatrane for which we were able to obtain crystals suitable for an 

X-ray structural study was 2d. A curious feature we observed in this structure is the virtually 

planar geometry around the bridgehead nitrogen (angle sum = 358.7°).[8] This geometry 

was attributed to van der Waals repulsions among the methylene protons adjacent to the 

bridgehead nitrogen, which tended to draw the nitrogen from a downwardly directed pyramidal 
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sp3 geometry into a nearly planar sp2 hybridized geometry. The planarity of the bridgehead 

nitrogen is mainly responsible for the transannular N-P distance of 3.29Â in 2d which is only 

about 2% shorter than the van der Waals sum of 3.35Â.[81 

With the above considerations in mind, we sought to synthesize and structurally 

characterize a proazaphosphatrane that engenders even greater steric encumbrance around the 

phosphorus than 2d, in order to determine if the bridgehead-bridgehead distance would be 

elongated, and if so, whether the bridgehead nitrogen would be more pyramidal, or the NPN 

bond angles [angle sum = 309.7(7)° in 2d| would be sterically compressed. 

Here we report the synthesis of lf-j and of 2f, and the conclusion from the X-ray 

structure of 2f that although its transannular distance is slightly [0.06(1) À| longer than that in 

2d, both bridgehead bond angle sums are unchanged from those in 2d. Also described are the 

conversions of lj to If i, 2f to 3b, 5 to 3b and 2f to 3a. Evidence is also presented for the 

formation of 6(CF3S03) in the synthesis of If. The molecular structural parameters for 3a 

determined herein by X-ray means are compared with those determined earlier for 4.[18| 

Z 
Me; S 

S Me 

3a: Z = S 
3b: Z = 0 

4 

H V /SiMes 
I ... N .SiMe 

5 6 
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2. Results and Discussion 

2.1 Syntheses 

Although the trilithio azaphosphatrane lj(CF3S03) could be isolated in 90% yield via 

step one in Scheme 1, compounds If-i derived from lj(CF3S03) by silylation in step two of 

this scheme were obtained in better yields and with greater convenience by generating lj in situ 

followed by trisilylation. In view of the relative ease with which trisilylation of lj(CF3S03) 

occurred to give the corresponding salts lg-i (51-63% yield) it was surprising to observe that 

lj upon reaction with Me^iCl (the least sterically hindered silylating agent employed) gave 

rise to a 3:1 mixture of the desired product If and what is probably 6(CF3S03) the disilylated 

product. Evidence for the latter compound is its31P chemical shift (-34.3 ppm) which is 

upfield as is the case for cation 7 (-23.2 ppm[8|). The reason(s) for the incomplete silylation 

here are not obvious. Attempts to deprotonate If-i with KO-r-Bu, the base of choice for these 

strong nonionic bases, succeeded only in the case of lf(CF3S03). For reasons that are not 

clear severe decomposition occurred when lg-i were treated with KO-r-Bu. 

Proazaphosphatrane 2f, obtained in 58% overall yield from la(CF3S03), was oxidized 

to 3b with (Me3SiO)2 (Scheme 1) in 94% yield. The oxide 3b was also derived from 5 in 

51% overall yield according to Scheme 2, presumably via intermediate 8 which was not 

isolated. Proazaphosphatrane 2f reacts with sulfur as shown in Scheme 1 to give crystalline 

3a in 76% yield. 

Scheme 1 

la(CF3S03) Ij(CFS03) R3SlC1. if or ig or lh or li 

3b | (Me3SiO); 2f KO-f-eJ 

7 
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Scheme 2 

n-BuLi Li. 
N-

9 ,Li 
.P^N Li 

N « / .  

Me3SiCI 
3b 

We had previously synthesized 5 from la by allowing the latter to react with molecular 

oxygen.[l8] The yield of 5 was improved here (71%) over that reported earlier (48%[18J) by 

reacting la with (Me3SiO)2. 

2.2 NMR studies. A plot of the 3lP chemical shifts of protonated pro azaphosphatranes 

(summarized in Table 1) against the degree of R substitution for hydrogen shown in Figure 1 

reveals some interesting trends. Trisubstituted alkyl and benzyl species display a 

comparatively narrow (~4 ppm) Ô3IP range (which is downfield) relative to their silyl 

counterparts (~14 ppm). These relationships, though largely preserved, become less 

pronounced as the number of non-hydrogen R groups decreases. Interestingly, the Ô31P values 

progress upfield with decreasing R substitution until the value of -45.2 ppm is reached when 

all the R groups are replaced by hydrogens (la). The trisubstituted lithium compound lj 

displays a Ô31P value (-17.7 ppm) that lies between the ranges for its trialkyI and trisilyl 

analogues. The orders in the ô31P values at each level of R substitution do not follow an 

obvious trend. 

Q- o'^ 

m*sVL|8&3 NskjffSS 

3 b 3"b 
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In efforts to determine if the Me3Si groups on 3b are sufficiently electronegative (via 

N-»Si pi-bonding effects) to induce sufficient transannulartion (i.e., 3'b) to affect the 3lP 

NMR chemical shift, and also to see whether evidence for tautomer 3" b could be found 

(owing to the superior strength of the Si-O bond and perhaps steric congestion among the 

equatorial Me3Si groups) VT31P and lH NMR studies were carried out. It was observed that 

the position of the 31P peak is independent of temperature, although the lH NMR spectrum of 

compound 3b is temperature dependent. At 298K, the resonance of the methylene protons 

showed two sets of multiplets (2.00-2.30 and 2.40-2.80 ppm). With increasing temperature, 

the peaks in the 2.00-2.30 ppm range began to combine with some of the peaks in 2.40-2.80 

ppm range to form a broad peak at approximately 2.42 ppm, while the remaining peaks in 

2.40-2.80 ppm range became sharper. At 343 K, the resonance of the methylene protons 

showed one broad peak at 2.42 ppm and one appearing to be a doublet of triplets at 2.79 ppm. 

It is suggested that at lower temperatures, compound 3b is rigid due to slow conformational 

inversion of the rings. Thus the protons of the methylene groups are not equivalent, displaying 

separated multiplet character in the 1H NMR spectrum. At higher temperatures, the structure 

becomes more flexible, rendering the protons of the methylene groups equivalent on the NMR 

time scale, thus accounting for the appearance of one doublet of triplets. 

lg(CF3SC>3) + 2b == 2g + lb (2) 

IIKCF3SO3) + 2b == 2h + lb (3) 

Efforts to compare the basicities of lg(CF3S03) and lh(CF3S03) with 2b were 

partially successful. 31P NMR monitoring of reactions 2 and 3 in CD3CN showed that for 

reaction 2 in CD3CN, lb (along with its P-D analogue) and 2g ( 101 ppm) were formed, as 

well as 9 (97.0 ppm) owing to hydrolysis by adventitious water. In an analogous reaction of 

lb and 2b, lb (along with its P-D analogue) and 2h (ô3tP = 105 ppm) were formed, as well 

as some partially hydrolyzed product 10 (ô3lP = 99.1 ppm). Both experiments suggest, 

however, that 2b is more basic than lg or lh. Although these equilibria lie far to the right, 
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9 SiEt3 

S /> 10 SiPh3 

X 11 SiMea 

the extreme sensitivity of 2g and 2h to moisture made calculation of an equilibrium constant 

unwarranted. 

This moisture sensitivity was also shown for 2f by monitoring its 31P NMR spectrum 

upon treatment with 3 equiv of H20 in CD3CN (see Experimental Section). The results are 

summarized in Scheme 3. Some support for the lack of formation of lf(OH) in the first step 

of this scheme is the absence of a 31P NMR peak at -24.5 ppm and the persistence of cation 12 

for up to one week. The reduced hydrolytic sensitivity of cations such as If, 12 and 13 may 

be attributed to the presence of N„-»P transannulation that reduces the electrophilicity of the 

silicon substituents. By contrast, untransannulated 3b hydrolyzes completely to 5 in 2 hours 

at room temperature as shown by comparison of its 31P, 'H and mass spectra which compared 

favorably to data we published earlier.[ 19) 
Scheme 3 

H tms H H 

53'P.92.0 \_Lvf 
12 13 

Ô31P, -34.0 ô31P, -42.0 

H20 H;Q [ 
lf(OH)-

2.3 Structural considerations. Compound 2f (Fig. 2) is only the second pro-azaphosphatrane 

that has thus far provided crystals suitable for X-ray analysis, the first being ld.[8j The 

bridgehead-bridgehead distances in these two compounds [2f, avg 3.360(7) Â; 2d, 3.293(2) 

Â|, average NPN angles [2f, 103.3(2)°; 2d, 103.24(7)°] and average CNC angles [2f, 

119.3(5)°; 2d, 119.6(2)°] are quite comparable. Thus any changes in stereoelectronic effects 

have a minimal effect on the overall geometry of the cage core. 

Compound 3a (Fig. 3) is only the second pro-azaphosphatrane sulfide in addition to 

14 to have been structured by X-ray means. The bridgehead-bridgehead distances [3a, 
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3.152(7); 14, 3.177(4) À), average NPN angles (3a, 107.9(2)°); 14, 106.7(1)°) and average 

CNC angles [3a, 119.8(5)°; 14, 119.4(3)°] are again very comparable, as are the P-S 

distances [3b, 1.952(2) Â; 14, 1.957(1) Â]. The smaller bridgehead-bridgehead distance by 

ca. 0.27 Â in 2f compared with 3a appears to be associated with the wider NPN angle in the 

latter compound (by ca. 5°) which tends to lift the nearly planar bridgehead nitrogen somewhat 

more strongly toward the phosphorus. 

2.4 Catalytic properties of2f 

Like 2b[l] and 2d[8|, 2f is a potent catalyst for reaction I in which Ar = Ph. Thus at 

room temperature, PhNCO is exothermically trimerized to the corresponding phenyl 

isocyanurate at room temperature in 97% yield. This result demonstrates that the zwitterionic 

intermediate 15, like its analogue of 2b[l| and of 2d[8|, can form despite the formidable steric 

bulk provided by the SiMe3 groups. 

3. Experimental Section 

3.1. General Procedures 

Acetonitrile was dried with CaHr THF, toluene, benzene, and pentane were dried 

with sodium. All solvents were freshly distilled from their respective drying agents and all 

reactions were carried out under argon. LH and l3C NMR spectra were recorded on a Varian 

VXR-300 NMR spectrometer or a Bruker WM-200 NMR spectrometer. 3lP NMR spectra 

were recorded on a Bruker WM-200 NMR spectrometer using 85% H3P04 as the external 

standard. High resolution mass spectra were recorded on a KRATOS MS-50 spectrometer and 

ESI mass spectra were performed using FINNIGAN TSQ700 spectrometer. Elemental 

14 15 
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analyses were performed in the Instrument Services Laboratory of the Chemistry Department at 

Iowa State University. Compounds la(CF3S03)[l9] and 2b[20] were synthesized according 

to our previously published methods. 

3.2. [HP(LiNCH2CH2)3N](CF3S03), lj(CF3S03) 

A suspension of la(CF3S03) (0.324 g, 1.00 mmol) in THF (50 mL) was cooled to -78 

°C under argon. N-butyllithium (1.28 mL, 3.20 mmol) as a 2.5 M solution in hexane was 

added and the reaction mixture was stirred while it warmed slowly to room temperature. 

Stirring was continued for 4 h at room temperature. The volatiles were then removed in vacuo 

and the residue was washed with cold (0 °C) pentane (20 mL). After drying the residue in 

vacuo, lj(CF3S03) was obtained as a white powder (3.10 g, 90%) and was used in the 

following reaction without further purification. Attempts to purify this compound consistently 

resulted in less pure material. 3IP (CD3CN): ô -17.67 (bds). 'H (CD3CN): Ô 2.59-2.80 (bdm, 

12H, NeqCH2 and NMCH2 resonance overlapped), 6.27 (d, 1H, PH, 'JPH = 460 Hz). I3C 

(CD3CN): ô 37.62 (bds, N„CH2), 50.63 (bds, N„CH2). 

3.3. [HP(Me3SiNCH2CH:)jN](CFsS03), lf(CF3S03) 

Both isolated lj(CF3S03) and lj(CF3S03) generated in situ used in this reaction gave 

similar results. Here the procedure for the preparation of lf(CF3S03) using lj(CF3S03) 

synthesized in situ as a starting material is described and the in situ method is also employed in 

subsequent preparations. A suspension of lj(CF3S03) generated in situ from la(CF3S03) 

(3.24 g, 10.0 mmol) in THF (300 mL) was cooled to -78 °C under argon. Trimethylsilyl 

chloride (4.37 g, 40.0 mmol) was slowly added with a syringe. The mixture (in a flask closed 

by a septum) was allowed to warm slowly to room temperature and was stirred at that 

temperature for an additional 10 h. The volatiles were removed in vacuo and the residue was 

extracted with acetonitrile (3 x 25 mL). The extract was filtered and the solvent was removed 

in vacuo to give a powder which was washed with pentane (1 x 50 mL). The 3lP and 'H NMR 

spectra of this white powder in CD3CN indicated that a mixture of lf(CF3S03) and 5(CF3S03) 



www.manaraa.com

21 

was formed in approximately a 3:1 ratio (see Discussion). The ratio of trimethylsilyl chloride 

was increased to six equivalents and the reaction time was extended from 10 h to 48 h in an 

attempt to synthesize pure lf(CF3S03). However, the product mixture ratio remained 

unchanged. Although attempts to isolate pure lf(CF3S03) from this mixture were not 

successful, the mixture was used in the following reaction to prepare 2f. 

3.4. P(Me3SiNCH2CH2)3N, 2f 

A suspension of 1.05 g of the above-described mixture of lf(CF3S03) and 5(CF3S03) 

in THF (80 mL) was added to a suspension of KO-r-Bu (0.336 g, 3.00 mmol) in THF (20 

mL) at room temperature. After the reaction mixture was stirred for 2 h at room temperature, 

the volatiles were removed in vacuo and the residue was extracted with toluene (1 x 50 mL). 

The extract was filtered and the solvent was removed in vacuo. Colorless crystalline 2f was 

obtained upon sublimation at 80 °C/0.5 Torr (0.451 g, 58% overall yield based on la). 3lP 

(C6D6): Ô 99.67. lH (C6D6): ô 0.24 (d, 27H, CH3,4JPH = 3.0 Hz), 2.68 (bdm, 12H, NcqCH2 

and N„CH2 overlapped). l3C (C6D6): ô 1.18 (d, CH3,3JPC = 9.0 Hz), 40.95 (d, N„CH2,2JPC 

= 4.5 Hz), 54.93 (d, N„CH2,3JPC = 3.0 Hz). HRMS m/z calculated for Cl5N39N4Si3P: 

390.22202. Found: 390.22155 (27.1, NT). Elemental analysis calculated for Cl3H39N4Si3P: 

C, 46.11; H, 10.06; N, 14.34. Found: C, 45.40; H, 10.21; N, 14.44. 

3.5. [HP(EtjSiNCH2CH,)jN](CFjSOj), lg(CF3S03) 

The synthesis of lg(CF3S03) was analogous to that of lf(CF3S03) except that 

triethylsilyl chloride (4.55 g, 40.0 mmol) was used instead of trimethylsilyl chloride. The 

product lg(CF3S03) was obtained as a white powder (4.02 g, 60%). 31P (CD3CN): Ô -25.99. 

lH (CD-CN): ô 0.80 (q, 18H, NcqSi(C//2CH3)3,3JHH = 8.0 Hz), 0.98 (t, 27H, 

NeqSi(CH2CA/3)3, 3Jhh= 8.0 Hz), 2.85 (bdm, 6H, N„CH2), 3.03 (dt, 6H, N„CH2,3JPH = 

16.0 Hz, 3JHH = 6.0 Hz), 6.28 (d, IH, PH, LJPH= 504 Hz). l3C (CD3CN): ô 5.14 (d, 

CH2CH3, 3JPC= 2.5 Hz), 7.65 (s, CH2CH3), 38.52 (s, N„CH2), 52.84 (d, NeqCH2, ZJK = 

11.1 Hz). MS (ESI) m/z: 517.2 (cation lg). 
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3.6. [HP(Ph3SiNCH2CH2)3N}CF3S03), lh(CF3S03) 

The synthesis of lh(CF3S03) was analogous to that of lf(CF3S03) except that 

triphenylsilyl chloride (11.8 g, 40.0 mmol) was used instead of trimethylsilyl chloride. The 

product lh(CF3S03) was obtained as a white powder (5.61 g, 51%). 3IP (CD3CN): ô -19.64. 

lH (CD3CN): Ô 2.88 (bdm, 6H, N„CH2), 3.58 (dt, 6H, N^CH,, 3JPH= 16.0 Hz, 3J„„= 6.0 

Hz), 6.92 (d, 1H, PH, 'JPH = 532 Hz), 7.07-7.49 (m, 45H, C6H5). ,3C (CD3CN): ô 42.57 (s, 

N„CH2), 52.07 (d, N,qCH2,-Jpc= 10.0 Hz), 129.35 (s, C6H5), 131.64 (s, C6H5), 132.43 (d, 

C6H5, 3Jpc= 1.5 Hz), 137.29 (s, C6H5). MS (ESI) m/z: 949.1 (cation lh). Elemental 

analysis calculated for C61H5aN4Si303PSF3: C, 66.64; H, 5.32; N, 5.10. Found: C, 66.87; 

H, 5.68; N, 4.87. 

3.7. [HP(Ph2MeSiNCH2CH2)3N](CF3S03), li(CF3S03) 

The synthesis of li(CF3S03) was analogous to that of lf(CF3S03) except that 

diphenylmethylsilyl chloride (9.72 g, 40.0 mmol) was used instead of trimethylsilyl chloride. 

The product li(CF3S03) was obtained as a white powder (5.45 g, 63%). 31P (CD3CN): ô -

34.25. lH (CD3CN): Ô 0.42 (d, 9H, CH3,4JPH= 1.8 Hz), 2.97-3.21 (m, 12H, N„CH2and 

N„CH2 overlapped), 6.65 (d, 1H, PH, lJPH= 494 Hz), 7.35-7.52 (m, 30H, C6H5). L3C 

(CD3CN): Ô - 0.98 (d, CH3,3Jrc = 3.1 Hz), 40.25 (s, NMCH2), 50.62 (d, NCQCH2,3JPC= 11.6 

Hz), 129.50 (s, C6H5), 131.62 (s, C6H5), 135.10 (s, C6H5), 135.64 (s, C6H5). MS (ESI) 

m/z: 762.9 (cation li). 

3.8. S=P(Me3SiNCH2CH2)3N, 3a 

Elemental sulfur (0.039 g, 1.20 mmol) was added to a solution of 2f (0.390 g, 1.00 

mmol) in benzene (20 mL) at 0 °C. After stirring the reaction mixture for 12 h at room 

temperature, it was filtered and the solvent in the filtrate was slowly evaporated to give product 

3b as a colorless crystalline solid (0.332 g, 76%). 31P (CSDS): ô 65.30. 'H (C6D6): ô 0.44 (s, 

27H, CH3), 2.11-2.26 and 2.53-2.82 (bdm, 12H, N^CH, and N„CH2 overlapped). 13C 

(C6D6): Ô 2.55 (s, CH3), 47.34 (d, N„CH2,2JPC= 3.0 Hz), 55.00 (s, N„CH2). H RMS m/z 
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calculated for C15H39N4SPSi3: 422.19410. Found: 422.19367 (37.8, M*). Elemental 

analysis calculated for C15H39N4SPSi3: C, 42.61; H, 9.30; N, 13.25. Found: C, 42.89; H, 

9.43; N, 13.15. 

3.9. 0=P(MejSiNCH2CH2)jN, 3b 

Method A. Bistrimethylsilyl peroxide (0.214 g, 1.20 mmol) was added to a solution of 

2f (0.390 g, 1.00 mmol) in pentane (20 mL) at 0 °C. After 10 h at room temperature, the 

reaction mixture was filtered and the solvent was evaporated in vacuo to give 3b as a white 

solid (0.340 g, 84%) which was further purified by sublimation at 80 "C/0.5 Torr (0.321 g, 94 

%). 3lP (C6D6): Ô 24.11. lH (C6D6): Ô 0.34 (d, 27H, CH3,4JPH= 3.0 Hz), 2.14-2.71 (bdm, 

12H, N^CH, and N„CH2). l3C (C6D6): ô 1.58 (d, CH3,3JK= 1.5 Hz), 47.16 (d, NeqCH2, 

2JPC= 2.3 Hz), 54.96 (s, N„CH2). HRMS m/z calculated for CI5H39N4Si3PO: 406.21694. 

Found: 406.21209. 

Method B. A suspension of 5 (0.190 g, 1.00 mmol) in THF (50 mL) was cooled to -

78 °C under argon. N-butyllithium (1.28 mL, 3.20 mmol) as a 2.5 M solution in hexane was 

then added with a syringe and after 30 min the reaction mixture was allowed to warm slowly to 

room temperature where it was stirred for an additional 3 h. The reaction mixture was then 

cooled to -78 °C and trimethylsilyl chloride (0.443 g, 4.00 mmol) was slowly added. The 

reaction mixture was again allowed to warm slowly to room temperature where it was stirred 

for an additional 12 h. All the volatiles were then removed in vacuo and the residue was 

extracted with toluene (1 x 50 mL). The extract was filtered through Celite and the toluene in 

the filtrate was removed in vacuo. The residue was sublimed at 80 "C/0.5 Torr to give product 

3b as a white solid (0.212 g, 51%). 

3.10. 0=P(HNCH2CH2)3N, 5 

Although we reported this compound previously [19), we found that the action of 

bistrimethylsilyl peroxide instead of molecular oxygen on la gave a higher yield of 5 in less 

time. To a suspension of la(CF3S03) (3.24 g, 10.0 mmol) in THF (150 mL) at room 
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temperature was added a solution of KO-r-Bu (1.35 g, 12.0 mmol) in acetonitrile (20 mL) 

followed by the addition of bistrimethylsilyl peroxide (2.02 g, 12.0 mmol) over a period of 10 

min. The reaction mixture was stirred at room temperature for 12 h and then filtered. The 

crude product was obtained as a yellowish solid from the filtrate by evaporation in vacuo. 

Compound 5 (1.35 g, 71%, lit. 48%) was recrystallized from methanol as colorless crystals. 

The 3lP, 'H, l3C NMR and mass spectral data were consistent with those in the literature.[19) 

3.11. Hydrolysis of 2f 

Water (6 |iL, 0.3 mmol) was added at room temperature via syringe to a solution of 2f 

(40 mg, 0.10 mmol) in CD3CN (0.6 mL) in a NMR tube. After shaking the NMR tube for 1 

min, the reaction mixture was allowed to stand at room temperature. A 3lP NMR spectrum of 

the reaction mixture was taken 30 min, 90 min and 480 min after the reagents had been mixed. 

After 30 min, the 3IP NMR spectra showed, that in addition to decreased signal intensity for 

the starting material 2f, there appeared a new signal at 92.0 ppm and a triplet at -33.0 ppm 

whose members were of equal intensity. After 90 min, the signal for the starting material 

vanished completely, the signal at 92.0 ppm decreased and the triplet, now at -35.0 ppm, 

greatly increased. After 480 min, the signals at 92.0 and -35.0 ppm disappeared while a new 

signal at -42.0 ppm was observed that persisted for a week (see Results and Discussion). 

3.12. Catalytic Trimerization ofPhNCO by 2f 

To a solution of 2f (0.41 g, 1.0 mmol) in dry benzene (20 mL) under argon was added 

(by syringe) phenyl isocyanate (6.00 g, 99% pure, 50.0 mmol, Aldrich). After the mixture 

was stirred at room temperature for 2 min, a white precipitate rapidly formed, transforming the 

reaction mixture into a solid mass. The solid was allowed to cool to room temperature and 30 

mL of dry benzene was added. After stirring at room temperature for 1 h, the resulting 

suspension was filtered in vacuo, further washed with 15 mL of dry benzene, and finally dried 

in vacuo to give phenyl isocyanurate as a white solid (5.82 g, 97%). The lH and 13C NMR 

and mass spectroscopic data matched those in the literature.[6] 
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3.13. 'H VTNMR of 0=P(Me3SiNCH2CH2)3N, 3b 

Solutions of 3b (41 mg, 0.10 mmol) in CD3CN (0.6 mL) and C6D6 (0.6 mL) were 

prepared. 31P NMR spectra of 3a in CD3CN were taken at 251 K, 26IK, 293 K, 323 K and 

341 K. 'H NMR spectra of 3a in C6D6 were also taken at 298 K, 323 K, and 343 K. 

3.14. X-ray Structural Determinations of2f and 3a 

A crystal of 2f was mounted on a glass fiber on the Siemens P4 for a data collection at 

213(2) ± IK. The cell constants for the data collection were determined from reflections found 

from a 360° rotation photograph. Twenty five reflections in the range of 18-31° 0 were used to 

determine precise cell constants. Pertinent data collection and reduction information are given 

in Table 2. Lorentz and polarization corrections and a nonlinear correction based on the decay 

in the standard reflections were applied to the data. A series of azimuthal reflections was 

collected and a semi-empirical absorption correction was applied to the data. The space group 

Pi was chosen based on systematic absences and intensity statistics. This assumption proved 

to be correct as determined by a successful direct-methods solution [211 and subsequent 

refinement. All non-hydrogen atoms were placed directly from the E-map. All non-hydrogen 

atoms were refined with anisotropic displacement parameters and all hydrogens were treated as 

riding-atoms with individual isotropic displacement parameters. Final refinements were carried 

out.[21-23] Selected bond angles and distances are collected in Table 3. 

A crystal of 3a was mounted on a glass fiber on the Enraf-Nonius CAD4 for data 

collection at 293(2) ± IK. The cell constants for the data collection were determined from 

reflections found from a 360° rotation photograph. Twenty five reflections in the range of 

4.27-15.77° 0 were used to determine precise cell constants. Pertinent data collection and 

reduction information is given in Table 2. Lorentz and polarization corrections and a nonlinear 

correction based on the decay in the standard reflections were applied to the data. A series of 

azimuthal reflections was collected for this specimen and a semi-empirical absorption correction 

was applied to the data. The space group P2,/c was chosen based on systematic absences and 
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intensity statistics. This assumption proved to be correct as determined by a successful direct-

methods solution[21] and subsequent refinement. All non-hydrogen atoms were placed 

directly from the E-map and they were refined with anisotropic displacement parameters. The 

hydrogen atoms were treated as riding-atoms with individual isotropic displacement 

parameters. The hydrogen atoms on the main body of the molecule were placed from 

successive difference fourier maps and refined isotropically. Final refinements were then 

carried out.[21-23] Selected bond angles and distances are collected in Table 4. 
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TABLE 1. 3lP NMR Chemical shifts for protonated proazaphosphatranes 

HP(RNCH,CH,)-,N*. 

Ra number of R groups * H ô3lP (ppm) reference 

(la) 0 -45.2 e 

Me (lb) 3 -10.0e 18 

Me 2 -21.4e 18 

Me 1 -35.5e 18 

Et(le) 3 -13.5' 8 

Et 2 -23.2' 8 

Et 1 -33.6' 8 

/-Pr (Id) 3 -11.8' 8 

i-Pr 2 -21.7' 8 

t-Pr 1 -32.3' _f 

PhCH2 (le) 3 -11.0' e 

Me3Si (lf) 3 -24.5 this work 

Me^Si 2 -34.3 this work 

Me,Si 1 -42.0 this work 

E^Si (lg) 3 -25.9 this work 

Et,Si 2 -38.8 this work 

Et,Si 1 -43.0 this work 

Ph3Si (lh) 3 -19.6 this work 

Ph3Si 2 -36.0 this work 

Ph3Si 1 -42.4 this work 

MePh,Si (li) 3 -34.3 this work 

MePh,Si 2 -39.3 this work 

MePh,Si 1 -43.1 this work 

*R is defined here as a substituent other than hydrogen. Thus la possesses a hydrogen on each equatorial 

nitrogen. ""Chemical shifts were measured in CD3CN unless stated otherwise. cDMSO. JCDC13. CM. A. H. 

Laramay, J. G. Verkade, J. Am. Chem. Soc. 112 (1990) 9421. rP. B. Kisanga, J. G. Verkade, to be published. 
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TABLE 2. Crystallographic Data for 2f and 3a. 

Empirical formula Cl5H39N4PSi3 C15H30N4PSSi3 

Formula weight 390.74 413.73 

Crystal color, habit clear, rectangular colorless plate 

Crystal dimensions (mm) 0.4 x 0.2 x 0.2 0.4 x 0.3 x 0.08 

Crystal system triclinic monoclinic 

20 25(18-31°) 25 (4.27-15.77°) 

Lattice parameters 

a, Â 10.304(5) 17.841(4) 

b, Â 14.963(7) 9.532(2) 

c, À3 16.753(8) 15.611(3) 

a,° 78.51(4) 111.38(3) 

&° 86.66(4) 2397.2(20) 

Y.° 71.28(3) 

Space group PI P2,/n 

Z 4 4 

4alcd g/Cm3 1.083 1.112 

.U(CuKa)mm 2.479 0.347 

Diffractometer Siemens P4 Enraf-Nonius CAD4 

Radiation, graphite monochromated CuK„ (X= 1.54178Â) MoKa (0.71073Â) 

Temperature 213(2) 293(2) 

Scan type 20:0 co-20 

108.74 54.94 

No. of reflections measured 5884 5664 

Corrections Lorentz-polarization Lorentz-polarization absorption 

absorption (trans. (trans, factors 0.758-0.626) 

factors 0.708-0.814) 

No. observations [I a 2a(I)| 4208 2230 

No. variables 415 217 

Residuals: R; R*' 0.0699, 0.1830 0.0777, 0.1573 

Goodness-of-fit indicator" 1.113 1.191 

Max, min difference peak (e"/A3) 0.690 0.430 

JR = ZIIFJ-IFJI/ZIFJ; = [I\v(IFal-IFJ):/XwlFjr. "Goodness of fit = [w(IFJ-IFJ:/(nob,-tLj|"-
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TABLE 3. Selected Bond Angles and Bond Distances in 2f. 

Bond Anales fdes) 

N(3A)-P( I A)-N(2A) 103.1(2) N(1B)-P(1B)-N(2B) 103.8(2) 

N(3A)-P( I A)-N( 1 A) 102.6(2) N(1B)-P(1B)-N(3B) 103.4(2) 

N(2A)-P( 1 A)-N( 1 A) 104.2(2) N(2B)-P(1B)-N(3B) 102.7(2) 

C(4A)-N(4A)-C(6A) 120.6(5) C(4B)-N(4B)-C(6B) 119.8(5) 

C(4A)-N(4A)-C(2A) 119.9(5) C(4B)-N(4B)-C(2B) 118.7(5) 

C(6A)-N(4A)-C(2A) 117.8(5) C(6B)-N(4B)-C(2B) 

Bond Distances CÂ) 

119.1(5) 

P(1A)-N(3A) 1.705(5) Si(lA)-N(lA) 1.735(5) 

P(IA)-N(2A) 1.715(5) Si(2A)-N(2A) 1.737(5) 

P(1A)-N(1A) 1.711(5) Si(3A)-N(3A) 1.732(5) 

P(1B)-N(1B) 1.711(4) Si(lB)-N(lB) 1.745(5) 

P(1B)-N(2B) 1.715(4) Si(2B)-N(2B) 1.747(4) 

P(1B)-N(3B) 1.720(4) Si(3B)-N(3B) 1.730(4) 

TABLE 4. Selected Bond Angles and Distances in 3a. 

Bond Angles (°) 

N(2)-P-N(3) 107.9(2) N(l)-P-S 110.7(2) 

N(2)-P-N(l) 107.9(2) C(4)-N(4)-C(6) 120.1(6) 

N(3)-P-N(l) 107.9(2) C(4)-N(4)-C(2) 119.4(5) 

N(2)-P-S 111.6(2) C(6)-N(4)-C(2) 119.8(5) 

N(3)-P-S 110.8(2) 

Bond Distances CÂ) 

P-N(2) 1.653(5) P-N(l) 1.675(4) 

P-N(3) 1.661(5) P-S 1.952(2) 
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Figure 1. Plot of 31P NMR chemical shifts of protonated pro-azaphosphatranes against the number of non-hydrogen R groups. 
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Figure 2. Computer drawing of 2f with thermal ellipsoids at the 50% probability level. 
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C(12) 

Figure 3. Computer drawing of 3b with thermal ellipsoids at the 50% probability level. 
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CHAPTER 4. FREE AND POLYMER-BOUND TRICYCLIC 

AZAPHOSPHATRANE HP(RNCH2CH2),N*: PROCATALYSTS IN 

DEHYDROHALOGENATIONS AND DEBROMINATIONS WITH NaH 

A paper published in the Journal of Organic Chemistry, 1999,64,4840 

Xiaodong Liu, Zhengkun Yu and John G. Verkade 

Abstract 

The commercially available nonionic base P(CH3NCH2CH2)3N (la) was shown earlier 

to be superior to DBU as a stoichiometric reagent for the conversion of primary and secondary 

alkyl halides to alkenes (Arumugam, S.; Verkade, J. G. J. Org. Chem. 1997,62,4827). The 

precursor cation HP(CH3NCH2CH2)3N* (2) to la, which is more stable and less expensive, is 

reported herein to be an efficient procatalyst for these reactions and also for the debromination 

of vicinal dibromides using NaH as a relatively inexpensive stoichiometric hydride source in 

CH3CN at room temperature. In dehydrohalogenations requiring more than ca. 10 h, the 

CH,CN ion also acts as a base. By itself, NaH does not function well or at all under the same 

conditions. A catalytic cycle is proposed in which hydride deprotonates cation 2 liberating 

catalytic la. The cations HP(HNCH2CH2)3N* (3) and 

HP[N(polymer)CH2CH2)N(CH2CH2NH)2* (4) are also shown to function as procatalysts for 

the efficient dehydrohalogenation of RX and for the debromination of vicinal dibromides. The 

preparation of the heterogeneous procatalyst 4 (OTf) is also described. 

Introduction 

The introduction of double bonds into organic systems via the elimination of hydrogen 

halides is a widely applicable transformation.1 Although typical organic bases, such as EtjN, 

N,N-dimethylaniline, pyridine, and quinoline have been employed as dehydrohalogenation 

reagents, they often result in unsatisfactory yields. Over the past 30 years, DBU and DBN 
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have become popular dehydrohalogenation reagents owing to their non-nucleophilic nature and 

greater basicity.2-3 However, these reagents frequently require heating and must be used in 

stoichiometric excess. Moreover, yields are often only moderate. Dehalogenations have been 

used as a means for the purification of olefins,4 for the temporary protection of double bonds,5 

and for generating a new double bond as part of a synthetic sequence.6 Dehalogenations from 

vicinal dihalides are promoted by a variety of nucleophiles, including halide and hydride ions, 

as well as neutral sulfur, phosphorus, nitrogen and oxygen compounds.7 Recently8-9 we 

found that the commercially available proazaphosphatrane la, reported for the first time by our 

group,10 is superior to DBU as a dehydrohalogenation reagent for primary and secondary alkyl 

halides. Solid 2(X), which is produced in these reactions (X = CI, Br, OTf) can be converted 

back to la by treatment with KO-r-Bu." 

V-FssnA 

o 
R R' 

la Me Me 
lb H H 
le polymer H 

Me 

N-K^Mc 
Ma. V 

. CD 

X" 

2(X) 

polymer 

3(OTf) 4(OTf) 

Here we report that NaH deprotonates 2(C1), 3(OTf) and 4(OTf), thus allowing for the 

possibility that neutral la c can act as a catalyst in dehydrohalogenations. By itself NaH is not 

an efficient dehydrohalogenation reagent, but it is considerably less expensive than other bases, 

such as DBN, DBU or KO-r-Bu. Because 2(d) is stable to air for months without 

degradation, it seemed to us that it, as well as 3(OTf) and 4(OTf) could function as 
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procatalysts for dehydrohalogenations of alkyl halides in the presence of NaH. Here we report 

that 0.1 equiv of any of these procatalysts in the presence of excess NaH (2.5 equiv) in 

CH3CN are not only efficient dehydrohalogenation media at room temperature, but that these 

mixtures also debrominate vicinal dibromides effectively. 

Results and Discussion 

That NaH can deprotonate cation 2 in CH3CN to give la is shown by a 31P NMR 

spectrum of a CH3CN solution of a 3.0/1.0 equiv ratio of NaH to 2(C1). Thus only one 

resonance at 119 ppm corresponding to la was observed after 20 min at room temperature. 

The combination of a catalytic amount of procatalyst 2(G), 3(OTf) or 4(OTf) (0.1 equiv) and 

excess NaH (2.5 equiv) was therefore employed as a dehydrohalogenation and debromination 

medium for the compounds in Table I. In the dehydrohalogenation of 7 with the above 

combination in CD3CN using 2(G) at room temperature, 83% and 99% conversions were 

obtained after I h and 2 h, respectively, without detectable side reactions according to 'H NMR 

and GC-mass spectroscopic analysis. By comparison, 2.5 equiv of NaH only used without 

2(G) in the same reaction gave rise to considerably slower reactions (i.e., 11% and 72% 

conversions after 1 h and 2 h, respectively). This observation prompted us to test our three 

procatalyst systems on the additional substrates 5-14 in Table 1 in the presence of NaH both 

with and without procatalysts. 

It was found that except for 14, which afforded no detectable product in any case, the 

conversions (95-99%) of the products formed from substrates 5-12 (33-94% conversions for 

13) treated with 0.1 equiv of each procatalyst and 2.5 equiv of NaH exceeded those obtained 

with 2.5 equiv of NaH by itself (<l-82%) by remarkable margins. It is noted that an electron-

withdrawing group p to the halogen (5-8) leads to high conversions with procatalyst/NaH in 

only 2 h, owing to rapid E2 elimination caused by activation of the hydrogen on the (3 carbon. 

Evidence for abstraction of such a hydrogen by la was presented earlier.9 Substrates 9 and 
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13 required more time to give high conversions of corresponding alkenes. Interestingly, 13 

gave two isomers (1-heptene and rrazu-2-heptene in 87 and 94% total conversions using 2(C1) 

and 3(OTf), respectively) while only one isomer (mz/u-2-heptene) was observed using 1.1 

equiv of la.9 It is of interest that the dibromides 10 and 11 each gave the corresponding 

debrominated product with all three procatalysts. This contrasts the result for these substrates 

described in our earlier publication in which only monobromoalkene was reported to form in 

the presence of a stoichiometric quantity of la.9 Repetition of these experiments with 10 and 

11 in the presence of a stoichiometric amount of la now reveals that their corresponding 

debrominated products (see Experimental Section) were undoubtedly also formed in our earlier 

experiments.9 

We believe the pathway shown in Scheme I for 2(G) reasonably accounts for the 

formation of these debrominated products. Thus step I occurs in the stoichiometric experiment 

and this is followed by step 2 under catalytic conditions. As with the use of PPh3 in such 

reactions,12 initial nucleophilic attack of the phosphorus of la on a bromine is followed by the 

formation of cation 1513 with elimination of the second bromine from the substrate as Br". 

When 2(Cl)/NaH is used, 15(Br) can be further reduced and deprotonated by NaH to 

regenerate la. In separate lH NMR experiments, 10 mol% of 2(Cl)/2.5 equiv of NaH and 2.0 

equiv of PPh3 were used to debrominate 10 in CD3CN at 35 °C. It was found that 

debromination by 2(CI)/NaH is much more efficient than by PPh3: 99% conversion vs <30% 

conversion in 2 h. The literature describes the use of PPh3 for debromination promoted under 

Scheme 1 

-CHBrCHBr- + la S!!Ei 

15(Br) 
Step 2: - NaH | 

-2 NaBr 
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considerably harsher conditions (xylene/150-160 "C/250 min), and the yield is only moderate 

(76%).12 

A possible dehydrohalogenation pathway for substrates requiring extended reaction 

times (beyond ca. 10 h) in the presence of 1 in CH3CN was proposed earlier, in which 

evidence was put forth that the ~CH2CN abstracts a proton from the substrates.9 Thus the main 

phosphorus-containing compound observed in the dehydrohalogenation of 13 in D3CCN is the 

deuterio analogue of 2, which displayed a triplet signal at -10.0 ppm in 31P NMR spectrum.9 

Catalytic cycles that account for the aforementioned direct and indirect dehydrohalogenations 

are shown in Schemes 2 and 3, respectively, for cation 2. The first step in Scheme 2 involves 

NaH deprotonation of cation 2 to give la, the effective dehydrohalogenation agent for 

substrates with activating groups. The signal at 119 ppm in the 31P NMR spectrum observed at 

the end of these reactions is characteristic of la. In the second step, la reacts with activated 

alkyl halides to give corresponding olefin products. That the first step in Scheme 2 is the rate-

determining is supported by the detection of only a single 3IP NMR signal at -10.0 ppm before 

completion of the reaction. This peak corresponds to cation 2 as noted above. The peak at 119 

ppm corresponding to la was not observed until the reaction was complete, which is in accord 

with the supposition that the concentration of la during the reaction is low and that the reaction 

Scheme 2 

Scheme 3 

Na CH3CN + X olefin 

CH2CN 
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rate of alkyl halides with la is fast compared with the regeneration of la from 2 by NaH. A 

similar conclusion can be drawn from the cycles in Scheme 3 in which the process on the left is 

again the slow step. In this scheme, however, deprotonation of CH3CN by la is faster than 

deprotonation of RX by la. All of the reactions were accompanied by the formation of H, gas 

bubbles. It should be mentioned that procatalyst 2(C1) can be rather simply recovered 

chromatographically (see Experimental Section). 

In our earlier work,14 attempts to isolate the neutral form lb from 3(OTf) resulted in 

oligomeric product, suggesting that intermolecular oligomerization occurs subequent to the 

deprotonation step. However, as shown in Table 1,3(OTf) is as effective as 2(C1) for both 

dehydrohalogenation and debromination, which suggests the formation of lb as an 

intermediate that reacts more quickly with the substrate than it does intermolecularly to form 

oligomer. Additional evidence supporting the formation of lb stems from an NMR experiment 

in which a 3IP NMR signal was observed at 91 ppm upon adding 2.0 equiv of KO-r-Bu to 

3(OTf) in THF at room temperature. The catalytic reaction pathways for 3(OTf) are analogous 

to those shown in Schemes 2 and 3. Although this procatalyst cannot be recovered after use in 

such reactions owing to oligomerization of lb, 3(OTf) is much less expensive to synthesize 

than 2(G) and is very comparable in efficiency. 

Whereas the synthesis of 2(C1)10 and 3(OTf)14 have been reported, that of 4(OTf) 

(Scheme 4) has not. Although the protonated form 4(OTf) was successfully synthesized, 

attempts to isolate its neutral form lc by deprotonation with KO-f-Bu or NaH, at room 

temperature or 60 °C, for 1 to 6 days have thus far failed for reasons that are not clear. 

Survival of cation 4 is signalled by its CPMAS 31P NMR chemical shift at -15.9 ppm (see 

Experimental Section). However, the results in Table 1 show that 0.1 equiv of 4(OTf) in the 

presence of excess NaH (2.5 equiv) in CH3CN effectively allowed both dehydrohalogenation 

and debromination, although more slowly than 2(G) and 3(OTf) (Table 1). Thus we believe 

that in the presence of NaH, lc is generated in situ and that it functions as the catalyst The 
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advantage of this approach in which both the NaH and the procatalyst and catalyst are insoluble 

is easy isolation of spectroscopically pure products (ca. 95%) by filtration of the reaction 

mixture followed by evaporation. Moreover, the procatalyst is easily recovered by washing 

and drying the filter cake. 

Scheme 4 

3IPNMR(MAS) 

chemical shift 

H 

%-p«£kH 

OTr 

3(OTf) 

-67.0 ppm 

a. P(NMe2)3 , HOTf. CH2C12, RTAr, 30 min. 99%. 

b. Merri field's peptide resin, DMF, 110°C, 6 days. 

c. KO-r-Bu or NaH, THF, RT or 60°C, I - 6 days. 

polymer 

4(OT0 

N= 

lc 

oir 

•15.6 ppm 

Experimental Section 

CH3CN and CD3CN were distilled from CaH2. All other solvents were used as 

purchased. All chemicals were obtained from Aldrich Chemicals and were used without 

purification unless otherwise noted. All reactions were carried out at room temperature under 

Ar. Both 2(C1)10 and 3(OTf)14 were prepared according to our previously published methods. 

Preparation of Polymer-Based Azaphosphatrane 4(OTf). Under Ar, a 

mixture of 3(OTf) (4.15 g, 12.8 mmol), Merrifield's peptide resin (5.00 g, 1% cross-linked 

200-400 mesh, ca. 2.5 mmol Cl/g) and 60 mL of DMF was vigorously stirred at 110 °C for 6 

days. Then the reaction mixture was cooled to room temperature and 40 mL of MeOH was 

added. After the mixture was shaken for 5 min, it was filtered to give a solid which was 
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successively washed with THF, EtjN, MeOH, THF, Et^O, THF and Et,0 (10 mL each). 

After drying in vacuo, 4.56 g of a pale yellow-brown solid 4(OTf) was obtained. Solid state 

3lP NMR (MAS): ô-15.6 ppm. Elemental analysis: P 3.27%; N 5.15%. P : N ratio: Calcd., 

1.8; found, 1.6. Loading: 1.0 mmol of 3(OTf)/g of 4(OTf). 

Attempted Deprotonation of 4(OTf). Under Ar, 4(OTf) (1.0 g, ~ 1.0 mmol) was 

added to a suspension of KO-r-Bu (1.12 g, 10 mmol) or 95% pure NaH (0.24 g, 10 mmol) in 

THF or DMF (20 mL). Then the reaction mixture was vigorously stirred at room temperature 

or 60 °C for I to 6 days. The solid remaining after filtration of the reaction mixture was 

successively washed with THF, DMF and THF (20 mL each). After drying in vacuo, 2.0 to 

2.5 g of a pale brown solid was recovered. Solid state 3lP NMR (MAS): ô -15.9 ppm. 

General Procedure for Dehydrohalogenation or Debromination. The 

combination of 2(C1), 3(OTf) (0.10 mmol) or 4(OTf) (0.10 g, ~0.10 mmol) and NaH (0.1 g, 

2.5 mmol, 60% in mineral oil) or NaH (0.10 g, 2.5 mmol, 60% in mineral oil) by itself was 

added to 3 mL of CD3CN at room temperature under Ar. After stirring for 10 min, the alkyl 

halide (1.0 mmol) was added to above suspension, and the resulting mixture was stirred at 

room temperature. The reaction was monitored by lH NMR spectroscopy. After the reaction 

time stated in Table 1, an 'H NMR spectrum was recorded from which conversions were 

obtained by integration of peak areas. GC-mass spectra were recorded for some substrates to 

confirm the identity of the products. The reaction was then quenched by 0.1 mL of MeOH, 

and the resulting mixture was filtered and washed with CH3CN (2 x 10 mL). The cake was 

saved for the recovery of catalyst when 4(OTf) was employed as the procatalyst. The filtrate 

was dried over MgS04, followed by evaporating about 95% of the solvent under vacuum. The 

resulting crude product was purified by chromatography on a silica gel column using the 

eluents stated in Table I. The product was obtained upon evaporation of the solvent, and was 

identified by 'H and 13C NMR spectroscopies. 
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NMR Reaction of 10 with PPh3. In a 5 mm NMR tube was placed 10 (17 mg, 

0.05 mmol) followed by a mixture of PPh3 (27 mg, 0.10 mmol) in CD3CN (0.75 mL). The 

NMR tube was placed in an ultrasonic bath for 2 h and then the lH NMR spectrum was 

recorded. The reaction mixture was 35 °C. See Results and Discussion. 

NMR Reaction of 10 with 2(Cl)/NaH. In a 5 mm NMR tube was placed 10 (17 

mg, 0.05 mmol) and NaH (5.00 mg, 1.25 mmol, 60% in mineral oil) followed by a solution of 

2(C1) (3 mg, 0.01 mmol) in CD3CN (0.75 mL). The NMR tube was placed in an ultrasonic 

bath for 2 h and then the 'H NMR spectrum was recorded. The reaction temperature was 35 

°C. See Results and Discussion. 

NMR Reactions of 10 and 11 with la. In a 5 mm NMR tube was placed 10 or 

11 (0.05 mmol) followed by a solution of la (17 mg, 0.75 mmol) in CD3CN (0.75 mL). 

Then this NMR tube was placed in an ultrasonic bath for 2 h and then the lH NMR spectrum 

was recorded. The reaction temperature was 35 °C. lH NMR spectra of the reaction mixture 

showed that the reaction was complete in 1 h and that the products were the corresponding 

debrominated alkenes. This result was confirmed by GC-mass spectroscopy. 

Recovery of 2(C1). After chromatographic separation of the olefin products, the 

silica gel columns were washed with 100 mL of a solution of CHXU (95%) and CH3OH (5%) 

followed by washing with 100 mL of CH3OH. After collecting the pure CH3OH fraction and 

evaporation of the solvent under vacuum, 2(C1) was recovered as a white solid in 60-80% 

yield. The31P, 'H and 13C NMR spectra are consistent with those of a standard sample of 

2(C1). 

Recovery of 4(OTf). The filter cake from five experiments (0.50 g of 4(OTf)) was 

placed in a 100 mL round-bottomed flask followed by addition of 30 mL of distilled tLO. The 

resulting suspension was stirred at room temperature for 2 h followed by filtration. The cake 

was washed with H,0, MeOH, THF and Et,0 (20 mL each) and then it was dried in vacuo for 
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24 h to give 4(OTf) as a pale yellow-brown solid (0.45 g, 90% mass recovery). Solid state 

3lP NMR (MAS): Ô-15.7 ppm. 
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Table I. Dehydrobromination and debromination of alkyl halides with 2(CI)/NaH, 3(OTf)/NaH, 4(QTf)/NaH and NaH alone. 

substrate product* réaction time (h) el uent % conversion11 (yieltlc) 

2(CI)/NaH 3(OIT)/NaH 4<OIT)/NaH NaH only 

ti[/X/rN ,CN u 0.6 99 99 99 82 
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Table 1. (continued) 

identification was made by comparing 'H and ,3C NMR spectral data with those in the references indicated. ""Conversions were determined by 'H NMR 

integration of signals for olefin products to corresponding alkyl halides. GC mass spectral analysis was used to confirm the olefin products and to check 

for detectable side products. 'Isolated yields were obtained by chromatography and purity was determined by 'H NMR spectroscopy. dAldrich Library 

of UC and 'H FF NMR spectra, 1993, /(I), 1358B. 'Butcher, M.; Mathews, R J ; Middleton, S. Aust. J. Chem. 1973,26,2067. The reaction solution 

turned blue within I min which suggested the possibility of a side reaction between NaH and the NO, group in substrate. However, the GC mass 

spectrum showed the olefin product listed as the only detectable product and thus the formation of side products was assumed to be negligible. 'Aldrich 

Library of l3C and H HT NMR spectra, 1993, 1(2), 2.1A. 'Aldrich Library of IJC and 'H HT NMR spectra, 1993, 1(2), 24A. 'See reference 5. 

'(a)Kropp, I1. J.; Crawford, S. IX J. Org. Chem. 1994,59, 3102. (b) Aldrich Library of 1JC and 'H FF NMR spectra, 1993,1(2), 36A. '(a) Rupard, J. H.; 

Paulis, T. D.; Janowsky, A.; Smith, H. E. J. Med. Chem. 1989,32,2261. (b) Jones, A. J.; Gardner, P. D.; Grant, D. M.; Litchman, W. M.; Boekelheide, 

V. J. Am. Chem. Soc. 1970, 92, 2395. 'Johansen, J. E.; Christie, I) ; Rapoport, H. J. Org. Chem. 1981,56,4914. The reaction was carried out in dry 

THF intead of CH3CN. "The product decomposed during attempted chromatographic separation. "From bulb-to-bulb distillation at 120 "C/O.l torr. 

"Front direct filtration of the reaction mixture followed by drying under vacuum. "Aldrich Library of l3C and H Ft NMR spectra, 1993,1( 1 ), 18B. 

""Aldrich Library of l3C and 'H FF NMR spectra, 1993, 1(1), 25B. ''Aldrich Library of l3C and 'H FF NMR spectra, 1993,1(1), 73C. 
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CHAPTER 5. P[(S,SvS)-PhHMeCNCH,CHj]3N: A NEW CHIRAL 3lP AND 'H 

NMR SPECTROSCOPIC REAGENT FOR THE DIRECT DETERMINATION 

OF ee VALUES OF CHIRAL AZIDES 

A paper published in the Journal of Organic Chemistry 2000, 65,701 

Xiaodong Liu, Palanichamy Uankumaran, Ilia A. Guzei and John G. Verkade 

Abstract 

A facile and economical procedure for the synthesis of the C, chirai a-

phenylethylamino trisaminoamine [(S,5,5)-PhHMeCNHCH2CH2]3N in good yield is 

reported. The corresponding bicyclic proazaphosphatrane P[(S,S,S)-PhHMeCNCH,CH2]3N, 

its bicyclic phosphoryl derivative and its tricyclic P-protonated azaphosphatrane were also 

synthesized and characterized. It is found that the proazaphosphatrane is an efficient 

derivatizing agent for the direct determination of enantiomeric ratios of chirai azides by means 

of 31Pand 'H NMR spectroscopy. 

Introduction 

In recent years we have been exploring the chemistry of proazaphosphatranes such as 

la-f,16 some of which are proving to be exceedingly potent catalysts, promoters and strong 

nonionic bases that facilitate a variety of useful organic transformations. For example, lb is an 

R 

la H 2a 
lb Me 2b 
lc i-Pr 2c 
Id Et 2d 
le Bz 2e 
If Me# 2f 

H R 

C J* : A $ CE/ 

* 
H

V
Me 

N(CH2CH2NHCHMePh)3 H2N Ph 
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efficient catalyst for the trimerization of aryl and alkyl isocyanates that function as additives in 

the manufacture of nylon-6,7 for the protective silylation of a wide variety of sterically hindered 

and deactivated alcohols,8 and for the acylation of such substrates.9 Proazaphosphatrane lb is 

much stronger as a base than DBU,10 a commonly used nonionic base in organic synthesis. 

Thus it is a superior base for the synthesis of porphyrins,11 for the dehydrohalogenation of 

secondary and tertiary halides,12 and for the synthesis of a chirai fluorescence agent.13 As a 

result of such applications, lb has become commercially available.14 Recently, we have 

discovered that lb and lc are also efficient nonionic base catalysts for transesterification,15 fi­

ni troalkanol synthesis,16 Michael addtions,17 ^-hydroxy nitrile synthesis,18 and a,(5-

unsaturated nitrile synthesis.19 

Chirai azides are important starting materials for the synthesis of amines that are used as 

ligands, chirai auxiliaries, pharmaceutical intermediates and building blocks for the asymmetric 

synthesis of natural products.20 Although amines can be made in several ways, the azide 

reduction method is often employed because it is facile and well documented in the literature. 

Hence numerous methods have been developed to synthesize azides in enantiomeric forms.21 

While a variety of approaches can be taken to establish the enantiomeric purity of chirai 

compounds,31P NMR spectroscopic analysis is very popular because of the attractive features 

of this nucleus.22 Several derivatizing agents have been developed for such analyses of chirai 

alcohols, amines and thiols.21" However, no derivatizing agent has been reported for the direct 

determination of ee values of chirai azides by means of 3IP or H NMR spectroscopy. 

SCI 6 7 
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We report herein a simple and efficient procedure for the synthesis of the C3 chirai 

tripodal trisaminoamine 3 from commercially available inexpensive (S)-a-phenylethylamine 4, 

and the conversion of 3 to the corresponding tricyclic azaphosphatrane 5C1 which can be 

deprotonated to the bicyclic proazaphosphatrane 6. The new chirai nonionic base 6 is found to 

be an excellent tagging agent for the direct determination of enantiomeric excesses of chirai 

azides using 3lP and lH NMR spectroscopy. Upon oxidation, proazaphosphatrane 6 yields the 

new C,-chirai phosphine oxide 7. 

Scheme 1 
HwMe 

3.0 ;c: 4 
H%N Ph . 'R 

x excess LiAIH4 , W'R 
x 

KV-h) THF, reflux. 5 days ^'4 ° H A  3 . 0  P ( O P h ) 3  v  ^  z 3  

8 Py, 100 °C, 10 hrs 
85% 

-x:, 
K ' x XC13 

3 

3-3HCI 

Results and Discussion 

Synthesis of 3. The synthetic route to the chirai trisaminoamine 3 is shown in 

Scheme 1. In the first step, nitrilotriacetic acid 8 is condensed with 3.0 equiv of 4 in the 

presence of P(OPh)3 using pyridine as the solvent at 100 °C to give (S,S,S)-amidoamine 9. 

The synthesis of 9 reported earlier3 required tedious column chromatography for purification 

and the yield was only moderate (65%). In the present work, spectroscopically pure 9 was 

obtained in a good yield (85%) upon recrystallization from THF/hexanes at -20 °C. To ensure 

complete reduction of all three amido groups of 9 to give optically pure 3, it was necessary to 

carry out the second step in the presence of excess LiAIH* in refluxing THF for five days. The 

yield of 3 (82%) is surprisingly good. 
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Scheme 2 

.'-Pf (5 steps) '*Pr 

/ \ 
HO NH2 

10 11 

Scheme 3 

P (7 steps) j—\ 

(y- " I f), 

12 13 

The only two tripodal chirai trisaminoamines that have been reported possess chirai centers at 

the beta carbon of the tertiary nitrogen24,25 as shown in Schemes 2 and 3. The synthesis of 11 

involves nucleophilic ring opening of the aziridine derived from 1024 The drawbacks of this 

synthesis are that the enantiopure amino alcohol used as the starting material is expensive, and 

five steps are required to obtain the desired product. Although (S)-proline 12, the starting 

material for 13, is readily available and inexpensive, seven synthetic steps are required to 

obtain the final product, including two condensations, three LiAlH4 reductions, a protection 

and a deprotection.25 By contrast, our route to 3 utilizes inexpensive nitrilotriacetic acid 8 and 

(S)-(-)-a-phenylethylamine 4, only two steps are required to obtain the final product and the 

work-up is quite simple involving only extraction and recrystallization. Moreover, the chirai 

substituents can be readily replaced with other chirai amines in order to tune the steric and 

electronic properties of the proazaphosphatrane derivatives. Chirai 3 represents the first 

example of a tripodal trisaminoamine in which the chirai centers are not on the CHjCHj 

moiety. 

Synthesis of 5(C1), 6 and 7. The protonated azaphosphatrane 5(C1) shown in 

Scheme 4 was synthesized according to our established procedure for analogs of this cation.3 
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Scheme 4 

PC13, P(NMe2)3 KO-r-Bu (Mc3SiO)2 

SCI 6 7 

3 

3 CH3CN. rt, 12 hrs 
62% 

THF, rt, 2 hrs 
82% 

C6H& 10 °C, 5 hrs 
90% 

However, formation of the tricyclic phosphatrane cage was not complete even after one week 

of reaction. Thus only 75% conversion and a 62% isolated yield were realized, which is 

considerably lower than the 95% conversion and 90% isolated yield for the analogous 

synthesis of 2b. Raising the temperature to 60 °C gave no improvement in either yield or 

purity of the product. The main impurity is 3*3HC1 (see Experimental Section). The 

formation of 3*3HC1 may be due to steric hindrance of the a-phenylethyl groups which could 

lower the rate of cage formation relative to protonation of 3. In the presence of KO-r-Bu, 

using THF as the solvent, 5(C1) was easily converted into proazaphosphatrane 6 in 82% yield 

within 2 h. Oxidation of 6 with (Me3SiO)2 in benzene gave 7 in 90% yield. 

Structural considerations. The computer drawing of 5(G) in Figure 1 features a 

P-N„ distance of 1.967(10) Â (which is 40% shorter than the sum of the P and N van der 

Waals radii26), a nearly tetrahedral bridgehead nitrogen [avg Z.CN„C = 112.54(7)° | and a 

nearly ideal trigonal bipyramidal phosphorus with N^-P-N^ angles averaging 119.4(10)°. All 

these metrics are consistent with a fully transannulated structure. The P-N„ distance of cation 

5 is within experimental error of those of the less sterically hindered analogs 2b26 and 2c3 (as 

judged by the 3 x esd criterion). The remaining bond distances and angles (Table 2) are 

unremarkable and the crystallographic data are collected in Table 3. 

Compound 6 is the first example of a chirai proazaphosphatrane characterized by X-ray 

crystallography (Figure 2). Its geometry around P is pyramidal [avg. /.N^PN^ = 

104.16(14)°], but the bridgehead axial nitrogen (angle sum = 357.3°) possess an essentially 

planar configuration. This planarity is attributed to van der Waals repulsions among the 

methylene protons adjacent to the bridgehead nitrogen, which tend to draw the nitrogen from a 
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downward directed pyramidal sp3 geometry into a hybridized nearly planar sp2 geometry.5 The 

transannular N-P distance of 3.274 Â in 6 is only about 2% shorter than the van der Waals 

angles are unremarkable (Table 4) and the crystallographic data are collected in Table 3. 

Like its nonchiral analogue 14,7 compound 7 (Figure 3) displays a nearly tetrahedrai 

geometry around bridgehead P [avgAN^PN^ = 107.81(13)°| and a nearly planar trigonal 

geometry around the bridgehead nitrogen [avg Z.CN„C = 119.999(6)° ], compared with 

107.6(1)° and 118.9(2)°, respectively, in 14.7 The P-NM distance in 7 [3.081(5) À| is about 

8% shorter than the sum of the P and N van der Waals radii but it is still very close to the P-N„ 

distance in 14 [3.152(3) Â|.7 The remaining bond distances and angles (Table 5) are 

unremarkable and crystallographic data are summarized in Table 3. 

Pro-azaphosphatrane 6 as a chirai derivatizing agent for chirai azides. 

In previous work10 we showed that proazaphosphatrane lb reacts with organic azides to give 

iminophosphines quantitatively. In the present work, diastereomeric iminophosphine 

derivatives were quantitatively prepared by heating the chirai proazaphosphatrane 6 with 

enantiomeric mixtures of azides in C6D6 at 50 °C in an NMR tube for 2 h, as represented in 

sum of 3.35 À and is very close to that of lc5 (3.293 Â). The remaining bond distances and 

14 

,CHbR'R-

(1) 
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reaction I. The lH and proton-decoupled 3lP NMR spectra of these derivatives were obtained 

directly without further purification. To evaluate the derivatizing ability of 6, (±)-neomenthyl 

azide was reacted with 6 in C6D6 at 50 °C for 2 h. Two 31P NMR singlets (32.55 and 31.41 

ppm) in a very nearly 1:1 ratio (Table 1), indicated the expected presence of a racemic mixture. 

'H NMR spectra also showed good diastereomeric peak separations for the benzylic proton Ha 

in the proazaphosphatrane moiety and Hb attached to the a-carbon in the azide moiety (5.65, 

5.79 ppm and 4.18,4.32 ppm, respectively) thus facilitating verification of ee values obtained 

by 31P NMR spectroscopy. 

When (-)-neomenthyl azide was reacted under the same conditions, only one singlet 

was observed at 31.44 ppm in the 3lP NMR spectrum and two multiplets in the 'H NMR 

spectrum (5.65 and 4.32 ppm), corresponding to Ha and Hb respectively, in 15 thus relating 

the NMR data to a specific enantiomer. A I: 1 mixture of (±) and (-)-neomenthyl azide 

employed to test the reliability of this method gave a ratio of (-) to (+) enantiomers from both 

the 3lP and lH NMR spectra of very nearly 3:1 as expected. When commercially available 

chirai phosphorus triamide 16 was used in a parallel reaction for comparison, no 

diastereomeric differentiation was observed. After reacting 16 with (±)-neomenthyl azide in 

C6D6 at 50 °C for 2 h, only one singlet (30.3 ppm) was observed in the 31P NMR spectrum. 

Although the corresponding 'H NMR spectrum indicated some chemical shift separation of the 

N-methyl group protons in moiety 16 of the corresponding diastereomers, the multiplet 

character of the peaks gave rise to excessive overlap, thus preventing adequate integration. 

These observations may be attributable to the presence of only two chirai centers in 16 which 

apparently do not generate a sufficiently chirai environment around phosphorus in 16 to allow 

Me 

Me 

16 
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differentiation of the diastereomeric products spectroscopically. In chirai proazaphosphatrane 

6 and hence in the iminophosphine product 15, the three chirai substituents held rigidly by the 

cage structure probably afford an enhanced chirai phosphorus environment. The azide 

substrates 17-22 used in this work and the results of the NMR measurements on the 

diastereomeric derivatives are given in Table 1. 

In general, the phosphorus imine derivatives examined by decoupled 31P NMR 

spectroscopy displayed excellent diastereomeric peak separation, allowing accurate integration 

and quantitative determination of the diastereomeric ratios. lH NMR analysis also gave good 

diastereomeric peak separation, although the spectra were more complex due to P-H and H-H 

coupling, as well as overlap with closely neighboring signals. The advantage of decoupled 31P 

NMR spectroscopic analysis is that no signals other than the two singlets associated with the 

diastereomeric derivatives are observed in the spectra. For substrate 22, however, no evidence 

for the expected diastereomeric derivatives appeared in the31P NMR spectrum, and only a peak 

for cation 5 (-10 ppm) which is characteristic of the protonated form of 6 was observed. This 

result is attributed to facile deprontonaton of the azido carbon, which was confirmed by the 

disappearance of the NMR spectroscopic resonance of this hydogen. Both the 1H an l3C NMR 

were quite complicated, however, suggesting that side reactions of the anion ensued. 

Experimental Section 

CH3CN was dried with CaH,. THF and Et,0 were dried with sodium, and other 

solvents were dried with molecular sieves. All solvents were freshly distilled before use and 

all reactions were carried out under an Ar atmosphere. The racemic azides used in this work 

were synthesized by heating NaN3 with the corresponding bromides in DMF at 60 °C for 24 h. 

Chemicals employed were purchased from Aldrich Chemical Company and were used without 

further purification. Elemental analyses were performed in the Instrument Services Laboratory 

of the Chemistry Department at Iowa State University. 
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Synthesis of (S,S,S)-Tris(2-(a)-methylbenzylcarbamoylmethyl)amine 9. 

Although the synthesis of 9 has been reported,23 an easier procedure is described here. 

Nitrilotriacetic acid 8 (19.1 g, 100 mmol) was added to 250 mL of pyridine. The slurry was 

stirred vigorously while (S)-(-)-(a)-methylbenzylamine 4 (37.0 g, 305 mmol) was introduced. 

The solution was warmed to 50 °C and P(OPh)3 (99.2 g, 320 mmol) was added. The reaction 

mixture was kept at 100 - 105 °C for 10 h followed by removing pyridine via vacuum 

distillation. The resulting yellow oil was dissolved in 600 mL of CHC13 and then sequentially, 

distilled H%0 (3 x 600 mL), 10% aqueous NaHC03 (10 x 600 mL), distilled H20 (3 x 600 mL) 

and brine (2 x 600 mL) were used to wash the organic phase. The organic phase was dried 

over MgS04 and concentrated under reduced pressure, giving the crude product as a pale 

yellow solid. Recrystallization of the crude product from THF (200 mL) and hexanes (50 mL) 

at -20 °C for 24 h gave pure 9 as a white solid (42.5 g, 85%). lH and I3C NMR data were 

consistent with those in literature.23 

Synthesis of (S,5,5)-Tris(2-(a)-methylbenzylamino-ethyl)amine 3. A 

solution of 9 (10.0 g, 20.0 mmol) in THF (150 mL) was added dropwise at room temperature 

to a suspension of LiAlH, (20.0 g, 520 mmol) in THF (300 mL). This mixture was 

vigorously stirred and heated under reflux for 5 days after which it was cooled to room 

temperature. Then 50 mL of 10% aqueous KOH was slowly added and the resulting mixture 

was heated under reflux until the salts turned white. After cooling the reaction mixture to room 

temperature, the salts were removed by filtration. The salts were again heated under reflux for 

I h in a mixture of THF (400 mL) and H20 ( 10 mL). After removal of the salts by filtration, 

the THF layers were combined and concentrated under reduced pressure. The resulting yellow 

oil was placed in a 20% aqueous KOH (50 mL) solution and extracted with CHXL (2 x 70 

mL). After drying the extract over MgS04 and concentrating it under reduced pressure, 3 was 

obtained as a pale yellow oil (7.51 g, 82%) which was used in the following reaction without 
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further purification. The sample for characterization was purified by silica gel column 

chromatography using a mixture of CHXI, and MeOH (10: 1) as the eluent. 

Synthesis of (S,5,5)-Tris(2-(a)-methylbenzylamino-ethyl)amine 

hydrochloride 3*3HC1. Crude 3 (4.60 g, 10.0 mmol) was placed in a 10% aqueous HC1 

(50 mL) solution. After stirring at room temperature for 2 hrs, CHXU (4 x 50 mL) was used 

to extract the product. After drying over MgS04, complete evaporation under reduced 

pressure, and purification of the residue by silica gel column chromatography using a mixture 

of CH2C12 and MeOH (10:1) as the eluent, 3*3HCI was obtained as a white solid (2.20 g, 48 

%). 

Synthesis of (S,5,5)-Azaphosphatrane 5(C1). To a solution of PC13 (47.0 

mg, 0.33 mmol) in CH3CN (10 mL) was added P(NMe2)3 (110 mg, 0.67 mmol) at 0 °C with a 

syringe. The resulting solution was stirred at 0 °C for 1 hr and then a solution of 3 (458 mg, 

1.00 mmol) in CH3CN (2 mL) was added. After stirring at room temperature for 12 h, the 

volatiles were removed under vacuum. The residue was then purified by silica gel column 

chromatography using a mixture of CHX1, and MeOH (15:1) as the eluent, giving 5(C1) (330 

mg, 62%) as a white solid upon drying over MgS04 and evaporation under vacuum. A crystal 

for X-ray analysis was obtained by diffusing Et,0 into a solution of 5(C1) in CH3CN at room 

temperature for 3 days. 

Synthesis of Chiral-Proazaphosphatrane 6. A solution of 5(Cl) (330 mg, 0.63 

mmol) in THF (10 mL) was added at room temperature to a suspension of KO-f-Bu (125 mg, 

1.10 mmol) in THF (20 mL). After the reaction mixture was stirred for 2 h at room 

temperature, the volatiles were removed in vacuo and the residue was extracted with benzene (2 

x 50 mL). The extract was filtered and the solvent was removed under vacuum giving 6 as a 

white solid (250 mg, 82%). A crystal for X-ray analysis was obtained by slow evaporation of 

a solution of 6 in THF at room temperature. 
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Synthesis of Chiral-Proazaphosphatrane oxide 7. Bistrimethylsilyl peroxide 

(180 mg, 1.00 mmol) was added to a solution of 6 (250 mg, 0.51 mmol) in benzene (10 mL) 

at 0 °C. After standing for 5 h at room temperature, the reaction mixture was filtered and the 

solvent was evaporated in vacuum to give 7 as a white solid (230 mg, 90%). The crystal for 

X-ray analysis was obtained by dissolving 7 in hot THF followed by cooling at -20 °C for 24 

h. 

Crystallographic structural determinations of 5(C1), 6, 7. The systematic 

absences in the diffraction data were consistent with space groups R3 and R3 for 5(d) and 7, 

and for space groups P2l and P2,/m for 6. In all cases the ^-statistics strongly suggested the 

non-centrosymmetric space groups. The chosen chirai space groups R3 for 5(C1) and 7, and 

P2, for 6 yielded chemically reasonable and computationally stable refinement results. The 

structures were solved using direct methods that provided locations for most non-hydrogen 

atoms from the £-map.27 The remaining non-hydrogen atoms were located in an alternating 

series of least-squares cycles and difference Fourier maps. All non-hydrogen atoms were 

refined with anisotropic displacement coefficients. All hydrogen atoms were included in the 

structure factor calculation at idealized positions and were allowed to ride on the neighboring 

atoms with relative isotropic displacement coefficients. In the case of 5(G) the empirical 

absorption corrections were based on fitting a function to the empirical transmission surface as 

sampled by multiple equivalent measurements.28 In the case of 7 the semi-empirical absorption 

correction data were collected by the ip-scan technique. Absorption corrections were not 

required for 6 because the variations in the integrated ip-scan intensities were less than 10%. 

In the structure of 5(G), the cation and anion reside on a threefold crystallographic axis that 

passes through atoms P, N(2), H(0A) and CI. This structure was refined with a fixed 

phosphorous-hydrogen distance of 1.400(1) Â. Structures 6 and 7 were refined with soft 

restraints on thermal displacement parameters to conserve data. Molecule 7 occupies a 

crystallographic threefold axis that passes through atoms P, O, and N(2). 
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General procedure for 'H and 3IP NMR spectral determination of ee 

values of chirai azides with 6. To an azide (0.05 mmol) in an NMR tube sealed with a 

rubber septum was added a solution of 6 (29 mg, 0.06 mmol ) in C6D6 (0.6 mL) at room 

temperature under an Ar atmosphere. The NMR tube was then heated at 50°C for 2 h. After 

cooling the NMR tube to room temperature, the 31P and 'H NMR spectra were recorded and 

the ee value of the racemic azide was determined from both NMR peak integrations (Table I). 
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Table L. 31P and *H NMR data for azides derivatized by 6. 

substrate actual ô31P(Aô) ôlH (AÔ) measured 
ratio (ppm)1 (ppm)b ratio0 

racemic 31.98(1.14) 4.21 (0.14) 49.0:51.0 
(49.1:50.9) 

(-)isomerc 32.66 4.18 100:0 

75-25f 31.98(1.14) 4.21 (0.14) 75.2:24.8 
(74.9:25.1) 

Vie Me 

?3 
p^xK^-GMe igg racemic 32.06 (0.63) 4.42 (0.22) 50.8:49.2 
ptr (50.2:49.8) 

ï3 
Ph/k^/SPh 19h racemic 32.26 (0.82) 5.19(0.07) 50.2:49.8 

(50.5:49.5) 

T3 
Me^Sr0^ 20* racemic 31.72(0.30) 4.78(0.09) 50.2:49.8 

H (51.0:49.0) 

aMJ racemic 31.97(0.56) 5.72(0.15)k 51.0:49.0 
isn S AQ 

a: 
OH (50.5:49.5) 

N3 

221 racemic 

"0 

aAverage of both signals and (separation between both signals). bAverage of both signals and (separation between 

both signals) of the proton on the alpha-carbon of the azide moiety unless otherwise stated. The ratio of the two 

diastereomers determined by 31P and (*H) NMR integrations. 'Synthesized according to the procedure described in 

Synthesis. 1990, 130. 'Authentic sample synthesized from (-)-menthol via a Mitsanobu transformation. fA mixture 

composed of racemic and pure (-)-isomer in a 1:1 ratio. Synthesized from the reaction of the corresponding iodide 
with sodium azide in refluxing acetone. ''Synthesized according to the procedure described in Synthesis, 1990, 130. 
1H NMR compared favorably with that reported in J. Chem. Soc. Perkin Trans. I. 1974,2287. 'Synthesized 

according to the procedure described in Synthesis, 1990. 130. 'Synthesized according to the procedure described in 

J.Am. Chem. Soc. 1954, 1231. ^The average of both signals and (the difference between both signals) of the three 

benzylic protons in the azaphosphatrane moiety. 'Synthesized by the PCC oxidation of 21. The *H NMR spectrum 
compared favorably with that reported in J. Org. Chem. 1994. 59. 2902. "Elimination of HN3 gave cation 5. 
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Table 2. Crystallographic Data for 5(C1), 6 and 7.a 

5(C1) 6 7 

formula C30H40C1N4P C30H39N.JP C30H39N4P 

formular weight 523.08 486.62 502.62 

crystal system rhombohedral monoclinic rhombohedral 

space group R3 P2, R3 

crystal color, habit colorless rod colorless block colorless block 

a, Â 15.7922(10) 9.245(3) 14.5268(10) 

b, k 15.7922(10) 14.7103(8) 14.5268(10) 

c, Â 9.8706(6) 10.918(4) 11.3942(18) 

V,Â3  2131.9(2) 1379.3(7) 2082.4(4) 

Z 3 2 3 

D(calc), g cm"3 1.222 1.172 1.202 

temperature, K 173(2) 293(2) 296(2) 

diffractometer Bruker CCD-1000 Siemens P4RA Siemens P4RA 

absorption 

correction 
Empirical (SADABS) none se mi-empirical 

radiation MoKa (X = 0.71073 Â) CuKa (X= 1.54178 Â) CuKa 

[A, mm'1 0.216 1.058 1.095 

0 range,0 2.54-26.50 2.06-56.54 2.62-56.35 

no. of measd reflect. 19563 2475 844 

no. of obsd reflect. 1963 2034 691 

R, %' 2.26 3.62 3.83 

R., 6.16 9.54 10.05 

GOF 1.054 1.058 1.030 

'Quantity minimized = R(wF2) = I[w(Fu
:-F/)l/I[(wF0

:):]":; R = IA/I(FJ, A = l(F0-FJI. 
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Table 3. Selected Bond Lengths (Â) and Angles (deg) for 5(C1): 

P-N(l) 

N(l)-C(l) 

N(l)-P-N(l)#2 

C(l)-N(l)-C(3) 

C(l)-N(l)-P 

Bond Distances 

1.6752(10) N(l)-C(3) 

1.4577(15) N(2)-C(2) 

Bond Angles 

119.404(10) 

117.04(10) 

121.06(8) 

C(3)-N(l)-P 

C(2)#2-N(2)-C(2) 

1.4818(15) 

1.4888(13) 

121.88(8) 

112.54(7) 

'Symmetry transformations used to generated equivalent atoms: # I -y,x-y,z; ÏÏ1 -x+y,-x,z 
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Table 4. Selected Bond Lengths (À) and Angles (°) for 6. 

Bond Lengths 

P-N(l) 1.694(3) P-N(2) 1.689(3) 

P-N(3) 1.703(3) N(l)-C(l) 1.455(5) 

N(l)-C(7) 1.470(5) N(2)-C(3) 1.468(4) 

N(2)-C(15) 1.476(4) N(3)-C(5) 1.461(4) 

N(3)-C(23) 1.474(4) N(4)-C(4) 1.437(5) 

N(4)-C(2) 1.439(5) N(4)-C(6) 1.440(5) 

Bond Angles 

N(l)-P-N(2) 103.91(14) N(l)-P-N(3) 104.15(1; 

N(2)-P-N(3) 104.42(14) C(l)-N(l)-C(7) 117.0(3) 

C(l)-P-N(3) 125.5(3) C(7)-N(l)-P 115.5(2) 

C(3)-N(2)-C(15) 116.9(3) C(3)-N(2)-P 125.6(2) 

C(15)-N(2)-P 115.9(2) C(5)-N(3)-C(23) 116.2(3) 

C(5)-N(3)-P 124.9(2) C(23)-N(3)-P 115.5(2) 

C(4)-N(4)-C(2) 120.2(4) C(4)-N(4)-C(6) 119.2(4) 

C(2)-N(4)-C(6) 119.8(3) 
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Table 5. Selected Bond lengths (À) and angles (°) for 7.' 

Bond Lengths 

P-O 1.482(5) N(l)-C(3) 1.499(5) 

P-N(l) 1.654(3) N(2)-C(2) 1.435(4) 

N(l)-C(l) 1.449(5) 

Bond Angles 

N(l)#l-P-N(l) 107.81(12) N(l)-C(3)-C(4) 112.4(4) 

C(l)-N(l)-C(3) 116.0(3) O-P-N(l) 111.09(12) 

C(3)-N(l)-P 119.4(3) C(l)-N(l)-P 124.4(3) 

C(2)-N(2)-C(2)#l 120.0(3) N(2)-C(2)-C(l) 112.0(4) 

N(l)-C(l)-C(2) 114.0(3) N(l)-C(3)-C(5) 109.0(3) 

'Symmetry transformations used to generate equivalent atoms: #1 -y,x-7,z. 
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C(7) 
CI6I 

CIS) 

C(3l 
CISI CO) MSI 

NMA) 

C(4) 

CCD 
M2) 

C(2I 

Figure I. The molecular structure of cation 5 of 5(Cl) drawn with thermal ellipsoids at the 

30% probability level. All hydrogen atoms except the H atom on the phosphorus were 

omitted for clarity 
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CI22I 
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Figure 2. The molecular structure of 6 drawn with the thermal ellipsoids are shown at 

the 30% probability level. The hydrogen atoms have been omitted for clarity. 
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Figure 3. The molecular structure of 7 drawn with the thermal ellipsoids are shown at the 

30% probability level. The hydrogen atoms have been omitted for clarity. 
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Supporting Information 

'P, 'H, l3C NMR and MS Spectral Data and Analyses 

(S,S,S)-Tris(2-(a)-methylbenzylamino-ethyl)amine 3: 'H NMR (CDCI3): Ô 1.33 

(d, 9H, J = 6.4 Hz), 2.12 (br, 3H), 2.45-2.55 (m, 12H), 3.71 (q, 3H, J = 6.4 Hz), 7.21-7.33 

(m, 15H, Ph). 13C NMR (CDCI3): Ô 24.4, 45.4, 54.0, 58.5, 126.7, 126.9, 128.5, 145.8. 

HRMS (EI) calcd for C30H4,N4 458.3410, found 324.2840 [M-CH2N(H)C(H)MePhl\ Anal, 

calcd for C^H^N.,: C, 78.56; H, 9.23; N, 12.21. Found: C, 78.95; H, 9.27; N, 12.05. 

(S,S,S)-Tris(2-(a)-methylbenzylamino-ethyl)amine hydrogen-chloride 3*HC1: 

lH NMR (CDC13): Ô 1.94 (d, 9H, J = 6.4 Hz), 1.99 (m, 3H), 2.55 (m, 3H), 3.26 (m, 3H), 

3.45 (m. 3H), 4.36 (s, 3H), 7.33 (m, 9H, Ph), 7.66 (m, 6H, Ph), 9.43 (br, 3H), 10.38 (br, 

3H). L3C NMR (CDC13): Ô 20.8, 42.0, 51.2, 60.2, 128.5, 129.4, 129.5, 136.0. Anal, calcd 

for C30H45N4CI3: C, 63.44; H, 7.93; N, 9.87. Found: C, 63.75; H, 8.02; N, 9.73. 

(S,S,5)-Azaphosphatrane 5(C1): 3,P NMR (CDCl3): ô -10.5; lH NMR (CDC13): ô 

1.40 (d, 9H, J = 6.8 Hz), 2.95 (br, 3H), 3.21 (br, 3H), 3.42 (br, 3H), 3.80 (br, 3H), 4.47 

(dq, 3H, y = 18.4 Hz, J = 6.4 Hz), 5.93 (d, 1H, 7 = 500 Hz), 7.23-7.40 (m, 15H, Ph); 13C 

NMR (CDC13): Ô 18.7 (d, J = 5.2 Hz), 34.2 (d, 7 = 7.1 Hz), 46.5 (d, J = 8.2 Hz), 53.7 (d, J 

= 17.0 Hz), 126.2, 127.8, 129.0, 141.8 (d, J = 4.4 Hz). MS (ESI): m/z 487.3 (cation). 

Anal, calcd for Q^H^N^PCI: C, 66.60; H, 7.77; N, 10.36. Found: C, 66.75; H, 7.88; N, 

10.35. 

(SySvS)-Proazaphosphatrane 6: 31P NMR (C6D6): ô 126.5; 'H NMR (C6D6): ô 1.40 (d, 

9H, J = 6.8 Hz), 2.95 (br, 3H), 3.21 (br. 3H), 3.42 (br, 3H), 3.80 (br, 3H), 4.47 (dq, 3H, J 
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= 18.4 Hz, 7  = 6.4 Hz), 5.93 (d, 1H, 7= 500 Hz), 7.23-7.40 (m, 15H, Ph); 13C NMR 

(C6D 6 ) : Ô 18.7 (d, 7 = 5.2 Hz), 34.2 (d, 7 = 7.1 Hz), 46.5 (d, 7 = 8.2 Hz), 53.7 (d, 7= 17.0 

Hz), 126.2, 127.8, 129.0, 141.8 (d, 7 = 4.4 Hz). HRMS (El) calcd for C30H39N4P 

486.2912, found 486.2816. 

(S,S,S)-Proazaphosphatrane oxide 7: 3lP NMR (CDC13): ô 22.0; lH NMR (CDCI3): 

Ô 1.54 (d, 9H, 7= 7.2 Hz), 2.30-2.50 (m, 6H), 2.60-2.90 (m, 6H), 5.22 (dq, 3H, 7=9.2 

Hz, 7 = 6.8 Hz), 7.19-7.58 (m, 15H); 13C NMR (CDC13): ô 19.1 (d, 7= 1.9 Hz), 43.9 (d, 7 

= 3.3 Hz), 52.4, 55.1 (d, 7 = 5.9 Hz), 126.8, 127.6, 128.1, 144.4 (d, 7 = 2.9 Hz). HRMS 

(El) calcd for C30H39N4OP 502.2862, found 502.2860. Anal, calcd for C30H39N4OP: C, 

71.71; H, 7.77; N, 11.16. Found: C, 71.23; H, 7.92; N, 10.98. 

(S,S,S)-Tris(2)-(a)-methylbenzylcarbamoylmethyl)amine 9: 'H and l3C NMR 

data compared favorably with that reported in reference 23 (Inorg. Chem. 1997,36,3210). 

Azide 18: lH NMR (CDC13): ô 3.20 (dd, IH), 3.31 (s, 3), 3.49 (dd, 1H), 4.36 (dd, IH), 

7.30-7.41 (m, 5H, Ph); ,3C NMR (CDCI3): ô 5.65, 56.96, 83.29, 126.79, 128.53, 128.82, 

MS (CI): 195 (M+NH/), 138.73, 121. 
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CHAPTER 6. [0=P(i-PrNCH,CHi)3NCH3]+: NOVEL EFFECT OF 

QUATERNIZATION ON THE STRUCTURAL METRICS OF THE BICYCLIC 

CAGE 

A paper published in the Heteroatom Chemistry, 1999,10,255. 

Xiaodong Liu, Brad Logsdon, Robert A. Jacobson and John G. Verkade* 

The title cation features the longest distance between the bridgehead atoms (3.56 À) 

so far recorded for phosphatrane cages despite a non-tetrahedral CNbridgeheadC angle (~114°). 

The 70.8° NbridgeheadCCN torsion angles in the bridging moieties produces a substantial twist 

along the C3 axis of the structure that does not easily allow racemization of the cage. The 

resulting rigidity of the twisted cage gives rise to AB patterns for the methylene protons of 

this cation and its analogues. 

Cage structures of type A (pro-azaphosphatranes) have been the subject of intense 

study in our laboratories in recent years because of their unusual phosphorus basicity, their 

remarkable catalytic activity in a variety of synthetically useful reactions, and the 

architectural diversity they display in the presence of electron pair acceptors. Compounds of 

type A possess P-N„ distances (3.29 À, R = z-Pr1; 3.36 À, R = SiMe3
2) that are 2% to 

Abstract 

Introduction 

A B 
R 
C 
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approximately 0% shorter than the sum of the P-N„ van der Waals radii (3.35 Â3) and axial 

nitrogens with virtually trigonal planar geometries attributable to steric rather than electronic 

reasons (see later). Pro-azaphosphatranes of type A fully transannulate to structures of type 

B (azaphosphatranes) with P-N„ bond lengths that are 40 ± 2% shorter than the sum of the P-

N van der Waals radii when Z = H+ [2.0778(4) Â, R = H4; 1.967(8) Â, R = Me5; 1.964(2) Â, 

R = z-Pr1] or CP [1.937(8)Â, R = Me6). Increasingly longer P-NM distances are observed in B 

(R = Me) in the order Z = H*< MeSC(NPh)' < HPhN* < MeS(S)C • Me* < S2C < l/2Cl2Hg 

a O < S < c/j-Br(OC)4Re until at Z = llhrans-CUPt a maximum of 3.33 Â is reached7, which 

substantially matches the van der Waals radii sum. 

The exceedingly strong Lewis basicity of non-ionic bases of type A [pK, of B (R = 

Me) a 32.9 in CH3CN)8 has been utilized by our group to improve substantially the synthesis 

of pyrrols,9 oxazoles,9 porphyrins,9 a-C-acylaminoacids9 a chiral fluorescing agent,10 alkenes 

via dehydrohalogenation reactions" and alkylated products of active methylene substrates.12 

It has been used by others for the improved synthesis of isoindoles from nitroaromatics13 and 

as a thermal stabilizer for dinitramide salts used as propellent oxidizers.14 The flexibility of 

the transannular distance in A has been shown by us to play a crucial role in its ability when 

R = Me to act as a superior catalyst for the protective silylation of alcohols,13 the synthesis of 

isocyanurates from isocyanates,15 the synthesis of a, |3-unsaturated nitriles17 and also as a very 

efficient promoter of alcohol acylation by anhydrides.18 Others have discovered that A is a 

useful catalyst for anionic ring-opening polymerization of lactams to nylons.19 The question 

of when bond formation occurs as the transannulation distance decreases has also been 

addressed.20 

Only where Z = O or S have species of type C been found, though none have been 

subjected to structural analysis by X-ray means until now. Compounds la and 2a were 

reported earlier by us to form as a mixture with their regioisomers lb and 2b, respectively, 

when the corresponding alkyl iodide was added to the parent proazaphosphatrane wherein Z 
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1 3 O i-Pr Me 
4 O i-Pr Et 
5 O Me Me 
6 O Me Et 

la S Me Me lb 
2a S Me Et 2b 

Z R R' 

= S.21 The upfield 31P chemical shifts of lb and 2b suggested that transannulation is present 

in these compounds. When analogous reactions were carried out for the corresponding 

unquaternized parents (R = Me or z'-Pr) wherein Z = O, only one regioisomer was obtained in 

each case, namely, 3-6 according to NMR spectroscopic analysis.6 Here we report on the 

structural metrics for 3 which we were able to obtain recently by means of an X-ray 

diffraction study. 

Although quaternization of N„ in forming 3 was expected to produce an elongation of 

the cage, it was not clear at the outset whether a bridgehead nitrogen in a bicyclic molecule 

of this type could assume at least a nearly tetrahedral geometry. Thus the virtually planar 

geometry of N„ in A is attributable to van der Waals repulsions among the hydrogens on the 

methylene groups adjacent to the N„'~ and such repulsions would presumably be intensified 

by downward pyramidalization of N„ upon attack of an electrophile. Indeed, the CN^C 

angle of 3 [avg 113.9(10)°|, whose structure is shown in Figure I, is substantially greater 

than the tetrahedral angle. Although this result is consistent with augmentation of the 

aforementioned van der Waals repulsions, other more subtle strain-inducing geometry 

changes may also be occurring. 

It is interesting to observe that the P-NM distance in 3 (3.56 À) is 6% longer than the 

van der Waals sum, and that this P-N„ distance constitutes a record axial elongation for 

phosphatrane cages. This elongation over the P, N van der Waals radii contrasts the 2.7% 

Results and Discussion 
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shortening of this distance [3.564(7) À] over the Si,N van der Waals sum in the recently 

reported structure of {rra/w^PPhj^OsCC^CUSKOCHjCH^jNMelJ-CFjSOj.23 However, the 

CN„C angle in this complex [avg. 113.9023] is essentially the same as in 3 and this is 

probably so for the same reason(s) as it is in the [HQCHjCH^NH]* cation wherein this 

angle has an average of 115.5° and the CCbrid8eheadC angle averages 113.90.25 

Comparison of the structure determined for a parent analogue of 3, namely, 7, reveals 

that the NPN angle of 3 [avg. 106.2(5)° | is within experimental error of that of 7 [avg. 

107.6(l)o24l whereas the CNXXC angle decreases by ca 6° upon quaternization of N„. The 

CNMC angle decrease from 7 to 3 causes a concomitant enlargement of the N^CC angle by 

ca 3° while the CCN„ angle remains constant within experimental error [i.e., 3x(esd)|. The 

decrease of ca. 3° seen in the internal PN^C angle from 7 to 3 may be associated with the 

presence of the more bulky /-Pr group on in the latter. A major consequence of the 

CN„C angle decrease in 3 is the induction of a twist of the cage (avg. N^CCN*, torsion angle 

= 70.8°) that is larger than that in 7 (avg. 58.2°). The inflexibility, with respect to a 

racemizing twisting motion along the Q axis, that results from these torsional angles of the 

bridges of 3-6 gives rise to the appearance of AB patterns for the bridging-methylene protons 

in the 'H NMR spectra of these compounds.6 These rigid structures are quite robust and in 

the case of 3, the AB pattern persists up to 80 °C. Moreover, in the 'H NMR spectrum of 3, 

two sets of CH(C//3)2 protons are also observed. We also observed that 0=P(i-

PrNCH,CH^N, the unquatemized parent of 3 is a good catalyst for the protective silylation 

of alcohols.26 By contrast, its quatemized analogue 3 displays no detectable catalytic 

/SiR3 

7 8 
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properties in such reactions. Because the positive charge in 3 is localized at the opposite end 

of the cage from the active silylation site, which is the phosphoryl oxygen, we tentatively 

conclude that the catalytic activity of the unquatemized parent is at least in part associated 

with a flexibility of the cage that permits some degree of transannulation in the silylated 

intermediate 8. 

Experimental Section 

Compound 3, prepared according to our preparation reported earlier,6 was 

recrystallized from a CH3CN solution at room temperature by allowing ether vapor to diffuse 

into it. After 48 hours, crystals suitable for X-ray diffraction were obtained. 

A crystal of approximate dimensions 0.2 mm x 0.2 mm x 0.2 mm was arbitrarily 

oriented on a glass fiber. Data were collected on a Siemens P4 computer-controlled 

diffractometer with MoKa radiation (0.71073 Â). Cell constants and an orientation matrix 

for data collection were obtained from a least squares refinement using 38 setting angles. 

The data were collected at room temperature using a variable omega scan. Three 

representative reflections were measured for every one hundered reflections collected to 

check the stability of the crystal. No significant decay was observed. Due to the rapid loss 

of intensities as 29 was increased, reflections were collected only to 29 = 45°. Lorentz 

polarization corrections were applied to the data but no absorption correction was applied 

because of the small value of [i. The structure was solved by a combination of heavy atom 

methods and direct methods and was refined using SHELXL-93. All non-hydrogen atoms 

were refined anisotropically. 

Scattering factors were taken from Cromer and Waber.27 All calculations were 

performed on a PC with a Pentium processor. Details of the data collection and refinement 

of this structure are reported in Table 1. Atomic coordinates, displacement parameters, bond 
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lengths, and angles for the structure have been deposited at the Cambridge Cristallographie 

Data Center. 
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Formula C^H^glN^OiP 

F.W. 476.37 

Crystal System monoclinic 

Space Group P2,/n 

a (Â) 9.243(4) 

b(A) 15.230(4) 

c (a) 16.332(8) 

m 93.93(4) 

Z 4 

F(000) 984 

Denied, (g/cm3) 1.380 

,u(MoKa) (cm1) 14.81 

Scan Mode to 

0-range (°) 3-22.5 

Octants of reciprocal 

space explored +h, +/- k, +/-1 

Measured reflections 4838 

Unique refl. with I>3c(I) 941 

Final R and R* indices3 0.387, 0.1589 

No. of variables 217 

GOF" 0.840 

aR = [2(F0 - klFJ)/IF„l. R, = [Iw(F„ - klFJ):/IwF0
:l''- bGOF = [Zw(F„ -k!FJ)"/(Notacrvattotls - NvanltiJlI;-. 
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Figure 1. ORTEP view of 3 (Ellipsoids are drawn at the 50% probability level). 
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CHAPTER 7. ELECTRON RICH 0=PR3 COMPOUNDS: CATALYSTS FOR 

ALCOHOL SILYLATION 

A paper submitted to the Heteroatom Chemistry 

Xiaodong Liu and John G. Verkade 

Abstract 

The catalytic effect of a group of R3P=0 compounds was studied in a mild procedure 

for the silylation of primary alcohols, secondary alcohols, hindered secondary alcohols and of 

hindered phenols, in the presence of r-butyldimethylsilyl chloride (TBDMSC1) and r-

butyldiphenylsilyl chloride (TBDPSC1). It was found that R3P=0 is an efficient catalyst in 

such reaction when R is a good electron donating group, such as Me;N or n-Bu and as 

NMe(CHo) in N(CH2CH2NMe)3P=0 (3). However, R3P=0 is a weak or ineffective catalyst 

when R is a poor electron donating group, such as Ph or O-n-Bu or as CH2N-o-CH2C5H1N in 

N(CH2CH2N-o-CH2C5H4N)3P=0. Compound 3, synthesized by oxidation of commercially 

available N(CH2CH:NMe)3P, displayed the best catalytic properties for alcohol silylation in 

terms of efficiency, stability and safety. 

Introduction 

Protection of the organic hydroxyl group is necessary for avoiding undesired reactions 

with oxidizing agents and electrophiles during the course of multi-step syntheses.1 Among the 

many trialkylsilyl reagents used to protect this functionality, r-butyldimethylsilyl chloride 

(TBDMSC1) and r-butyldiphenylsilyl chloride (TBDMSC1) are two of the most popular." A 

variety of methods has been reported for the derivatization of alcohols with the TBDMS and 

TBDPS moieties.3 These reactions have been most satisfactorily achieved by reacting the 

alcohol with a molar excess of imidazole using dimethyl formamide (DMF) as a solvent,"1-5 or 

with catalysts such as DMAP,:f 1, 1,3,3-tetramethy Iguanidine11 and ethyldiisopropylamine.2* 



www.manaraa.com

80 

R 

Me, -Me 

M„ î' .Me ±_ 
/? n^-PI^N. Me 2a Me ; <-N=/ " " 

More recently, the silylation of primary and secondary alcohols in 69-99% yields using 

TBDPC1 in DMF with catalysts, such as AgN03, NH4N03, or NH4C104 has been described.3"1 

Proazaphosphatranes of type l6 have been shown to be very strong nonionic bases that 

function as superior deprotonating agents,7 as a superior catalysts8and as efficient promoters9 

in a variety of synthetically useful organic transformations. For the very effective and mild 

silyl protection of a wide variety of OH-containing organic substrates catalyzed by l8b a 

mechanism involving intermediates 2a and 2b detected with 1 was postulated on the basis of 

NMR evidence. In an earlier study of the chemistry of 3, we discovered that the phosphoryl 

group of this compound is capable of catalyzing the conversion of isocyanates to 

isocyanurates10 and that it is also a good donor to Lewis bases including silanes, forming 

cationic adducts such as 4a-4f." This prompted us to evaluate the catalytic activity of 3 in 

alcohol silylation reactions. 

R' 

O R«jUR" 
Me Çi 4a R = R' = Me, R" = r-Bu . 

nJ 

^p.-N^Me O 4b R = R' = Ph, R" = r-Bu 
N PO . I Me 4c R = R' = R" = Me 

^ NfMe 4d R = R' = R" = Ph 
N NJ 4e R = R' = Cl, R" = Me 

•hJ 
4f R = R' = R" = CI 

Herein we report on the silyl protection of a wide variety of alcohols, including primary 

alcohols, secondary alcohols, hindered secondary alcohols and of hindered phenols using 3, 

0=P(NMe2)3 and 0=P(n-Bu)3 as the catalysts (equation I) under mild conditions. Among 

these catalysts, 3 displays the best overall catalytic properties in terms of efficiency, stability 

and safety. A comparison of the efficiency of these catalysts with the commonly used catalyst 
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O 

MCx 
Kt_ p<r Nfjvie 

catalysts 
or other 0=PR3 

ROH 
( 1°, 2° and phenols) MeCN, £13N, rt - 35°C 

r-BuMeiSiCI or f-BuPhiSiC! 

r-BuPh2SiOR 
r-1 1 * b=nhci <» 

O 
Il /o-CH2Py 

N^Ps^N^o-GKaPy 

5 

DMAP^ is also presented. The phosphine oxides 0=PPh3 and 0=P(0-rc-Bu) and 512 were 

found to be poor to nonfunctioning catalysts for alcohol silylation. 

In preliminary NMR monitoring reactions (see Experimental Section), we found that 

TBDMS silylation of benzyl alcohol (6) is accelerated in the presence of 3. Thus in CD3CN, 

2.1 h was required to effect 99% silylation of 6 (according to 'H NMR integration) in the 

presence of 0.5 equiv of 3, while 10.5 h was required to obtain the same conversion in the 

absence of a catalyst. When 0=P(NMe2)3, an acyclic analogue of 3, was used as the catalyst 

in CD3CN in the same reaction, only 1.3 h was required for 99% conversion. In the nonpolar 

solvent C6D6, 11 h is required for 99% silylation of 6 using 0.5 equiv of 3 as a catalyst while 

no reaction was observed during 12 h in the absence of a catalyst. When the coordinating 

solvent DMF was used in the presence of 0.5 equiv of 3, silylation of 6 was complete in 1.9 h. 

Although DMF seemed to be a somewhat better solvent than CH3CN in terms of reaction rate, 

CH3CN was the solvent of choice because of its lower boiling point and its ability to give 

yields comparable with those obtained in DMF. For a more complete comparison, reactions 

were carried out on a preparative scale for three different hydroxyl compounds including 

Results and Discussion 
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primary alcohol 6, secondary alcohol 10 and hindered phenol 14 (Table 1) in the presence of 

one of the six phosphoryl compounds 3 shown in this table. In addition, DMAP, a commonly 

used silylation catalyst ̂ was also compared. The results are listed in Table 1. 

Table 1 shows that 0=PR, wherein R is a good electron donating group, such as n-Bu, 

NMe2 or NMe(CH2) (in 3), considerably accelerates silylation for all three substrate alcohols 

whereas the lack of a good electron donating group leads to a poor catalyst (0=PPh3 and 5) or 

an ineffective one 0=P(0-«-Bu)3). In general, the catalytic efficiency for alcohol silylation of 

these phosphoryl compounds follows the increasing electron donor ability of the phosphoryl 

oxygen in the order 0=P(0-n-Bu)3 < 0=PPh3< 5 < 0=P(n-Bu)3, 0=P(NMe2)3,3. Of all the 

phosphoryl compounds tested, 3 seems most effective, although the advantage is admittedly 

somewhat marginal compared with 0=P(n-Bu)3 or 0=P(NMe2)3. We believe that the slight 

superiority of 3 in this respect may be associated with the stronger donor character of the 

oxygen in this compound than that in its acyclic analogue 0=P(NMe2)3 owing to an N„-»P 

transannular interaction that can occur in an intermediate or transition state." However, the 

P=0 group is more sterically hindered in the rigid cage structure of 3 by the upwardly directed 

Me groups each of which resides on a planar nitrogen. Such a bulk effect may compromise the 

higher character of 3 to some extent. Thus 3 does not show a remarkable advantage over its 

acyclic analogues 0=P(n-Bu)3 and 0=P(NMe2)3. The poorer performance of compound 5 is 

attributed to the withdrawing nature of the pyridyl groups in the CH2NCH2-o-C5H4N moieties 

and the large cone angle swept out by the CH,-o -C5H4N segment of the CH2-o -C5H4N 

groups. 

Compared with 3, the catalytic activity of DMAP in the silylation of alcohols is about 

the same for the primary alcohol 6 and the hindered phenol 14, but less efficient for the 

hindered secondary alcohol 10 (see later for additional discussion). At room temperature, 

silylations of 6,10, and 14 using 2 equiv of imidazole were faster than the combination of 10 

mol% 3 and 1.1 equiv of E^N (98% conversion vs 90% for 6 in 0.4 h, 97% vs 88% for 10 in 
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4 h, and 67% vs 50% for 14 in 8 h, respectively). However, when 10 mol% of imidazole and 

1.1 equiv of Et,N was used, much slower conversions at room temperature were observed 

than with 10 mol% of 3 and 1.1 equiv of EtjN (67% vs 90% for 6 in 0.4 h, 53% vs 88% for 

10 in 4 h, and 25% vs 50% for 14 in 8 h, respectively). Thus, on a mole-for-mole basis, 3 is 

more efficient than imidazole. That a base such as EyN as well as a catalyst is necessary for 

efficient silylations was shown by the lack of detectable silylation of 6 by TBDMSC1 in the 

presence of 10 mol % of 3 or C^PtNMe^ when E^N was absent. 

In Table 2, it is shown that of 3 catalyzes the TBDMS silylation of primary alcohols 

6-8 and phenols 12 and 13 within 0.5 h at room temperature in excellent isolated yields 

(>91%) while the secondary alcohols 9-11 require a longer reaction time (6 h) to give 

excellent product yields (>91%) of silylated products. The hindered phenol 14 gave only a 

moderate yield of silyl ether (55%) in 12 h. The tertiary alcohol 15 is resistant to silylation 

with TBDMSC1, giving no detectable yield after 48 h. For each substrate, silylations catalyzed 

by DMAP and in the absence of catalyst were also conducted for comparison. It should be 

noted that for the primary alcohol 6, the less hindered secondary alcohol 11, and phenols 

(12-14), 3 shows about the same efficiency as DMAP. However, for the primary alcohols 7 

and 8, and the hindered secondary alcohols 9 and 10,3 is somewhat marginally more efficient 

than DMAP. Except for the TBDMS silylation of phenols 12 and 13, silylations in the 

absence of catalysts proceed in considerably lower conversions (20-70%). 

Table 3 shows that with 0.10 equiv of 3 as a catalyst at 35°C, the primary alcohols (6 

and 7) and phenol (12 and 13) are silylated with TBDPSCI within 6 h and 4 h, respectively, in 

high conversions (95-99%), while the secondary alcohol 9 is more difficult to silylate, giving 

74% conversion over 24 h. It is noted that 11 and the acid-sensitive alcohol 8 require longer 

reaction times but give good conversions (94% and 97%, respectively) to silylated products. 

The hindered secondary alcohol 10 is reluctant to silylate with TBDPSCI, giving only a 30% 

conversion of product in 24 h. 
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Although several mechanistic pathways can be considered that rationalize the ability of electron 

rich 0=PR3 compounds to catalyze hydroxy! silylation, we believe the one shown in Scheme 1 

is the most plausible on the basis of present evidence. This pathway could be facilitated in the 

case of the somewhat superior catalyst 3, by transannulation of the bridgehead nitrogen to the 

phosphorus to form intermediates B and/or C wherein phosphorus is five-coordinate. An 

analogous pathway has been suggested as a working hypothesis in the ring opening of 

epoxides with SiCI4 promoted by 0=P(NMe2)3.13 Further support for the pathway in Scheme 1 

comes from our previously reported isolation and characterization of 4e and 4f." lH and 31P 

NMR spectroscopic data suggest the presence of transannulation in these compounds as well as 

in 4c and 4d." Further supporting the cycle in Scheme 1 in which ion formation is involved, 

is the fact that the catalyzed silylations occur in the polar solvent CH3CN. By contrast, 

silylation is much slower in benzene (see above). There is considerable evidence in the 
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literature indicating that pentacoordinate silicon compounds tend to be more reactive to 

nucleophilic substitution than four-coordinate silicon species.14 This evidence also supports 

the cycle in Scheme 1. 

Conclusion 

Compounds of the type 0=PR3, in which R is a good electron donating group are 

excellent catalysts for alcohol and phenol protective silylations under mild conditions using 

TBDMSC1 and TBDPSCI. The advantages of these catalysts are ( 1) The yields or conversions 

of the silylated alcohols and phenols are generally superior, (2) Acetonitrile can be used instead 

of the often used but comparatively nonvolatile DMF, (3) The 0=PR] catalysts are highly 

stable under the reaction conditions employed, (4) These catalysts are soluble in both polar and 

nonpolar solvents, and (5) 3, though more expensive than 0=P(NMe2)3, can be recovered in 

good yield and is less volatile than 0=P(NMe2)3 which is a well-known nasal carcinogen and 

should be avoided if a substitute is available. 

Experimental Section 

CH3CN and CD3CN were distilled from CaH2, and E^O and benzene were dried with 

sodium. All solvents were freshly distilled before use and all reactions were carried out under 

Ar. Catalysts 36 and 512 were prepared according to methods developed in our laboratories. 

Silica gel sheets were purchased from J. T. Baker. All other chemicals were purchased from 

Aldrich Chemical Co. and were used as received. 

NMR monitoring experiments for the catalytic silylation of 6. In a 5 mm 

NMR tube was dissolved 0.05 mmol of catalyst (when catalysts were used) in 0.75 mL of 

solvent (CD3CN7C6D6 or DMF). To this solution was added 0.11 mmol of f-BuMe2SiCl 

followed by the addition of NEt3 (15 jaL, 0.11 mmol). After shaking the tube for 2 min, 6 (10 

uL, 0.10 mmol) was added followed by recording 'H NMR spectra at various time intervals. 
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The reaction temperature was 20 °C. The time interval between each spectrum was 1 min for 

spectra 1-20, 10 minutes for spectra 21-30, 30 minutes for spectra 31-40,1 hour for spectra 

41-45, and 4 hours for each spectrum thereafter. One minute was required to complete each 

spectrum. 

General procedure for silylations with <-BuMe2SiCl TBDMSC1 or t-

BuPhjSiCl TBDPSCI. In a 10 mL test tube capped with a rubber septum was dissolved 

0.1 equiv of a catalyst in 2 mL of CD3CN. To this was added 1.0 mmol of the alcohol 

followed by the addition of NEt, (0.15 mL, 1.1 mmol). After stirring the mixture for 5 min, 

1.1 mmol of the silylating agent was added with continued stirring at room temperature (25°C) 

for r-BuMe,SiCl and at 35 °C for f-BuPtuSiCl. 'H NMR spectra were taken to obtain the 

conversion based on 'H NMR integration of characteristic resonances, and the product identity 

was confirmed by GC-mass spectroscopy. After the reaction time stated in the tables, 0.02 mL 

of H,0 was added with stirring. The mixture was filtered, and the residue was washed with 

Et,0 (2x5 mL) followed by evaporating ca 95% of the solvent under vacuum. The resulting 

crude silyl ether was purified chromatographically on a silica gel column using a mixture of 

95% hexane and 5% ethyl acetate as the eluent. The product was obtained upon drying over 

anhydrous MgS04 and evaporation of the eluent. The identifying 'H and l3C NMR spectra 

compared favorably with those in the literature given Supporting Information Available. 

General procedure for the recovery of 3. After chromatographic separation of 

the silyl ether product, the silica gel column was washed with an additional 100 mL of a 

solution of 90% hexanes and 10% ethyl acetate followed by washing with 100 mL of CH3OH. 

After collecting the pure CH3OH fraction and evaporating the solvent under vacuum, 3 was 

recovered as a white solid in 60-75% yields. The 3lP, 'H and l3C NMR spectra were identical 

to those of an authentic sample of 3. 
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Table 1. Comparison of seven catalysts for alcohols with TBDMSCl.3 

substrates reaction % conversions'* 

"hf no cat. Q=P(0-/I-BU)3 P=PPh3 5 OP(w-Bu)3 Q=P(NMe2)3 3 DMAP 

|Jj urfc 0.5 70 72 80 91 98 97 98 95 

?H 

Çj 10 6 41 29 60 71 94 93 99 85 

)H 

14 12 20 22 26 33 58 53 63 65 

aSee Experimental Section for conditions. bBased on *H integrations in which the error limit is about 1% 

absolute. Conversions are reproducible within this error limit for at least two separate runs on each 

substrate. 
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Table 2. Comparison of 3 and DMAP in alcohol silylation with TBDMSCl.3 

substrate reaction 
time 
(h) 

conversions'* (yields6) (%) reaction 
time 
(h) 3d DMApd no cat. 

Cr°H« 

7 

(XUH 

Uy 9 

r-BuOH 15 

0.5 

0.5 

2 

0.2 

0.2 

12 

48 

98(91) 

98(92) 

97(91) 

97(93) 

99(91) 

99(94) 

99(95) 

99(94) 

63 (55) 

95 

88 

90 

60 

85 

99 

99 

99 

65 

70 

45 

44 

31 

41 

65 

91 

90 

20 

aSee Experimental Section for conditions. bBased on lH integrations of characteristic resonances. 

The conversions are reproducible for at least two separate runs on each substrate. The error limit is 

about 1% absolute. ^ After column chromatography, the purity was >95% by lH NMR spectroscopy. 

The yields are the highest values observed in each case. d10 mol% catalyst. eNo detectable reaction. 
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Table 3. TBDPSCI Alcohol silylations catalyzed by 3.a 

substrates reaction 
time 
(h) 

conversions (%) 

no cat. 

aCT-

o„cOrOH» 

14 

6 

6 

24 

24 

24 

50 

95 

99 

97 

74 

30 

94 

97 

98 

47 

50 

39 

59 

78 

85 

aSee Experimental Section for conditions. bBased on lH integrations in 

which the error limit is about 1% absolute. Conversions are 

reproducible within this error limit for at least two separate runs on each 

substrate. New compounds were characterized by *H, 13C NMR, and 

HRMS(EI) spectroscopies. c 10 mol% catalyst dNo detectable reaction. 
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CHAPTER 8. P(MeNCH2CH2)3N: A HIGHLY SELECTIVE REAGENT FOR 

SYNTHESIZING TRANS EPOXIDE FROM ARYL ALDEHYDES 

A paper to be published in the Journal of Organic Chemistry 

Xiaodong Liu and John G. Verkade 

In contrast to its acyclic analogue P(NMe2)3 (1), which in benzene at room temperature 

reacts with two aryl aldehyde molecules bearing electron withdrawing groups to give the 

corresponding diaryl epoxide as an isomeric mixture {trans!cis ratios: 72/28 - 51/49), 

P(MeNCH,CH:)]N (2a) under the same reaction conditions is found to be a highly selective 

reagent that provides epoxides with trans!cis ratios as high as 99/1. These reactions are faster 

with 2a, because its phosphorus atom is apparently more nucleophilic than that in 1. Thus it is 

found that 2a more easily forms 1:1 and 1:2 adducts with one or two molecules of aldehyde, 

respectively. These adducts apparently are intermediates in the formation of the product 

epoxide and the corresponding phosphine oxides of 1 and 2a. 

Epoxides are important starting materials in organic synthesis.1"3 The most frequently 

used method to generate them is to oxidize olefins with peroxides. However, for the preparation 

of epoxides with sensitive structural features, this method is not always applicable.4 For 

converting aryl aldehydes possessing electron withdrawing groups to the corresponding 

epoxides, Mark et al. found that P(NMe2)3 (1) is a reagent that provides a 

Abstract 

Introduction 

Me z 

1 
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simple and mild approach often leading to high yields of product.4 Moreover, this 

transformation tolerates sensitive functional groups (such as pyridyl) that oxidative methods do 

not. The use of 1 has therefore constituted a practical synthetic approach.5"8 Although trans 

epoxides are always major products with reagent 1, stereoselectivity is usually poor since 

trans!cis ratios between 2.6/1 and 1. l/l are generally realized,4 depending on the substrate. 

Thus, finding a stereoselective synthesis of epoxides from aryl aldehydes has remained 

challenging. 

,R —— label fî ,Me 
Me a 

\) i-Pr b / v 

Et c 

Bz d ' 

•y Me;Si e ^ 

In recent years we have been exploring the chemistry of proazaphosphatranes such as 

2a-e*'14 some of which are proving to be exceedingly potent catalysts, promoters and strong 

nonionic bases that facilitate a variety of useful organic transformations. For example, 2a is an 

efficient catalyst for the trimerization of aryl and alkyl isocyanates that function as additives in 

the manufacture of Nylon-6,15 for the protective silylation of a wide variety of sterically 

hindered and deactivated alcohols,16and for the acylation of alcohols.17 Proazaphosphatrane 2a 

is a much stronger base than DBU,18 a commonly used nonionic base in organic synthesis. 

Thus 2a is a superior base for the synthesis of porphyrins,l9for the dehydrohalogenation of 

secondary and tertiary halides,20 and for the synthesis of a chiral fluorescence agent.21 As a 

result of these and other emerging applications, 2a has become commercially available.™ 

2A„CHO + Y"y ̂ -Ar VxAr XT m 

'N 
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We report herein a facile, efficient, and highly selective procedure for the synthesis of 

trans epoxides from aryl aldehydes bearing electron-withdrawing groups. For comparison of 

conversions and stereoselectivity, both 1 and 2a were used in parallel reactions. We also find 

that the more bulky proazaphosphatrane 2b does not lead to epoxides, although color changes 

do occur. 

Results and Discussion 

That 2a becomes oxidized to 3 in the reaction of two aryl aldehyde molecules in 

benzene to give the corresponding epoxide was shown by 31Pand lH NMR spectroscopic 

analysis of a C6D6 solution of a 2.0/1.0 equiv ratio of 9a to 2a (Table 1). Only one 3IP 

resonance at 20.2 ppm corresponding to oxide 310 was observed after 12 h at room 

temperature. In the 'H NMR spectrum, the CHO proton resonance also disappeared after 12 h 

and a singlet at 3.95 ppm corresponding to the oxirane proton was observed (99% 

conversion). By comparison of 'H and l3C NMR spectroscopic data in the literature,23 the 

epoxide 9b present in the reaction mixture was found to be almost pure trans {trans!cis ratio = 

98/2). Simply filtrering the reaction mixture and washing the filtered solid with cool benezene 

afforded 'H-NMR spectroscopically pure trans-9b in 75% yield. For comparison, the use of 1 

under the same conditions led to a considerably slower reaction and lower stereoselectivity 

(85% conversion with a trans!cis ratio of 69/31). The isolated yield of epoxide in both bases, 

however, was virtually the same (74% with 1 and 75% with 2a) because a substantial amount 

of starting material is converted to intermediate adducts with 2a while no such adducts survive 

in the reaction with 1 (see later). The improved stereoselectivity realized with 2a prompted us 

to evaluate this reagent with the substrates in Table 1. Compound 1 was used in parallel 

reactions to obtain conversions, yields and translcis ratios for comparison with the data realized 

with 2a, and these data are also included in this table. 
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Table 1 reveals that substrates 12a, 13a and 14a afforded no detectable or very slow 

reaction rates, respectively, with 0.5 equiv of 1, although a 28% conversion to product was 

realized with 0.5 equiv of 2a (trans/cis ratio = 92/8) in the case of substrate 12a. Faster 

reactions were observed for substrates 4a 11a with 0.5 equiv of 2a (95-100% conversions) 

than those carried out with 0.5 equiv of 1 (5-95% conversions). However, the faster 

conversions with 2a did not necessarily lead to higher product yields, owing to formation of 

comparatively robust 1:2 adducts of 2a and the aldehyde substrate (see later), which gave rise 

to higher conversions of starting materials but to lower isolated yields of epoxide. Thus for 

substrates 4a, 6a, and 7a, compound 1 gave higher isolated yields than with 2a although the 

conversions were lower. 

For all the substrates tested except 13a and 14a (which did not react), compound 2a 

gave excellent stereoselectivity (translcis ratios: 92/8 - 99/1) based on lH NMR integration of 

the reaction mixtures, while 1 gave isomeric mixtures (translcis ratios from 51/49 to 72/28) 

under the same conditions. The reactions were also substrate dependent: for the aryl aldehydes 

with electron-withdrawing groups (i.e., 4a-7a), nearly quantitative conversions (>99%) were 

achieved within I h using 2a. For the delocalized polyaromatic aldehydes (i. e., 8a 11a), 

high conversions (95-99%) were realized within 12-14 h with 2a. Epoxide formation was 

more sluggish for substrate 12a and 60 h were necessary to obtain a 28% conversion with 2a 

while less than 2% conversion was observed with 1. However, 2a did provide good 

stereoselectivity (trans/cis ratio = 92/8) despite the low conversion. In the case of ketone 13a 

and 14a, no detectable formation of corresponding epoxide 13b and 14b was observed even 

after 120 h and 24 h respectively, probably because of steric hindrance present in the substrate. 

Moreover, aryl aldehydes bearing electron-donating groups such as 2,5-dimethyl-benzaldehyde 

and 2-methoxybenzaldehyde yielded no detectable epoxide formation over two days under the 

same reaction conditions. These results are consistent with earlier work4 wherein it was shown 

that relatively electrophilic aldehydes promote epoxide formation. It should be noted that 
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although the trans/cis ratios of chromatographically purified epoxides 4b 8b were the same as 

those displayed by the corresponding reaction mixtures, we observed that when filtration was 

used to purify the product, higher trans/cis ratios were achieved for the isolated epoxides (9b-

11b) than those observed for the corresponding reaction mixtures. Here, the rra/is-epoxides 

were less soluble than their cis isomers in benzene. 

Scheme 1 A\ 
H _ o^T 

AlCHO AtCHO I 
1 k AA_* 

M=',N-W2 NMei 

15 
NMei 

16a 

:  j V -  A "  

16c 16b 

Two reaction pathways have been considered for l.4-6 The one put forth by Mark et al. 

in Scheme l4 involves phosphorus nucleophilically attacking an aldehyde carbonyl carbon to 

form the 1:1 adduct 15 wherein the oxygen attacks a second molecule of the aldehyde to form 

the 1:2 adduct 16 (for which three resonance forms are shown). Epoxide formation would 

occur by carbanion attack in 16c directly on the opposite benzyl carbon to give trans epoxide, 

or by carbanion attack on the benzylic carbon in an SN2 manner after rotation of the O-CHAr 

bond to give the cis epoxides. However, this mechanism was questioned by Ramirez6 who 

proposed an alternative pathway (Scheme 2) wherein the phosphorus in 1 first electrophilically 

attacks the carbonyl oxygen of the aryl aldehyde to form a 1:1 adduct (17) on the grounds that 

the phosphorus of 1 should exhibit an even greater tendency to electrophilically attack the 
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Scheme 2 

ArCHO 
1 

Me2N' 

18a 18b 

Arv /r Ar\ ff 
* M=/V™=2 

carbonyl oxygen than the phosphorus of trialkyl phosphites that were reported to give isolable 

adducts of type 18b in Scheme 2.6 Thus after 17 is formed, a second molecule of the 

aldehyde attacks 17 to give a mixture of erythro (18a) and threo (18b) 1:2 adducts. If the 

erythro form is predominant, as might be expected for steric reasons, the rra/is-epoxide formed 

by loss of the oxide of 1 should predominate over the cis product. However, 1 gave rise to 

poor stereoselectivity, with trans/cis ratios generally ranging from 1.1 to 2.6/ probably owing 

to similar steric hindrance in the erythro and threo forms of the adduct formed from a variety of 

substituted aryl aldehydes.46 It was also reported6 that when cyclic 19 was employed instead 

of 1 in the reaction with 4-nitrobenzaldehyde, the corresponding 1:2 adducts containing 

pentavalent phosphorus (21a and 21b in Scheme 3) were isolated as a mixture in 60% yield in 

a 1:1 ratio. 

In the present work, when 0.5 equiv 2a was allowed to react with 4a in C6D6 at room 

temperature, the31P NMR spectrum of the reaction mixture exhibited three resonances (20.6, 

« Ar 

r-p> ArCHO 

17 
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22.7, and 22.8 ppm) in a 20:4:1 ratio. The signal at 20.6 ppm is characteristic of the oxide 

3,10 and the other two are believed to be associated with the 1:1 and 1:2 adducts formed as 

intermediates. Mass spectroscopy (ESI) of the same reaction mixture revealed a large peak at 

468 daltons corresponding to the 1:2 adduct, and a considerably smaller signal at 337 daltons 

attributable to the 1:1 adduct. Thus, it is reasonable to assign the large 31P NMR peak at 22.7 

ppm to the 1:2 adduct and the smaller one at 22.8 ppm to the 1:1 adduct. The lH NMR 

Scheme 3 

ArCHO 

o 

L -N-
Me 

M e  O — H  

ArCHO o 
19 20 

Me n / 
z" 1 

21a 

Ar Ar 

21b 

BOH 

-<7%, 

spectrum of the reaction mixture failed to give unambiguous evidence for the ratio of these two 

adducts owing to peak overlaps. These observations are consistent with the reported result 

from the reaction of cyclic 19 in Scheme 3 with 4-nitrobenzaldehyde to give the 1:2 adduct. 

However, no evidence for the formation of the 1:1 adduct was reported.6 Based on the 31P 
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Scheme 4 
Ar\ ,H 

2a 

"Yi-
A,CHO AtCHO ^ 

z-J — O' 
M 

AY1> 

Ar\ 
Ar>4 

VNJ^ + C-N=/ 

23a 23b 

Ar 
V 

Ar Ar. 

+ 3 + 
O 

(trace) 

~~7\ 
•Q Ar 

NMR chemical shifts of the I: I and 1:2 adducts observed in our work (which are much closer 

to those of a P-0 bonded adduct24 than to that of a carbon bonded20 adduct of 2a) the reaction 

pathway proposed by Ramirez6 (Scheme 2) seems to be supported by our results. Since 2a 

like 19 is a cyclic aminophosphine, the reaction pathway in Scheme 4 is analogous to that of 

19 in Scheme 3. We also note that when more bulky substrates such as 9a were allowed to 

react with 0.5 equiv of 2a, similar evidence of the presence of a mono and diadduct was 

obtained from 3IP NMR and mass (ESI) spectroscopies. However, the ratio of 3 to 1:2 adduct 

to 1:1 adduct was 30: 5 : 1, implying a higher production of 9b from 9a compared with the 

production of 4b from 4a (Table 1). Efforts to isolate a pure adduct of 4a with 2a or of 9a 

with 2a in a 1:1 or 2:1 ratio at -78 °C (in toluene) or room temperature always resulted in a 

mixture of 3, the 1:2 adduct, and the 1:1 adduct. Attempts to purify the 1:1 or 1:2 adduct by 

recrystallization also failed. 
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As mentioned earlier, when the cyclic aminophosphine 19 was allowed to react with an 

aryl aldehyde bearing an electron-withdrawing group, a 1:2 adduct (trans.cis ratio 1:1) was 

isolated.6 The cw-isomer isolated from this mixture refluxing in ethanol gave the trans 

epoxide. However, the isomeric mixture of the 1:2 adducts of 2a observed in the present work 

gave no evidence of decomposition in this manner under the same conditions. During silica gel 

column chromatographic purification, however, these adducts did dissociate to give the starting 

aldehyde. Attempts to improve product yields by prolonging the reaction time, changing the 

reaction temperature or using different solvents such as THF, toluene or CH2C12 failed. By 

contrast, the reaction of 1 with these aldehydes provided no detectable quantities of the 

corresponding 1:1 or 1:2 adducts. 

Although 1 reacts with one equiv of benzaldehyde to produce a 1:1 adduct.4 Aryl 

aldehydes bearing electron-withdrawing groups give epoxides as the dominant products and 

whose stereochemistry is only somewhat preferentially trans. On the other hand, when 19 

was employed, an isomeric mixture of trans and cis (1:1) 1:2 intermediate adducts was 

obtained from which the pure cis 1:2 adduct intermediate could be isolated.6 The cis 1:2 adduct 

gave pure rra/ts-epoxide in 86% yield but in <20% overall yield from the aldehyde.6 It was 

found in the present work that 1 reacts much more slowly with aryl aldehydes bearing electron 

withdrawing groups than 2a (see Table I). Owing to the possibility of transannular interaction 

from the axial nitrogen to the bridgehead phosphorus in 2a, this base is stronger and perhaps 

more nucleophilic. Thus 2a was expected to be more reactive with an aldehyde carbonyl 

group than 1, and this is reflected in Table 1. It is conceivable the use of acyclic 1 or cyclic 19 

for epoxide formation from aldehydes, steric differences between cis and trans 1:2 adduct 

intermediates are relatively small, owing to P-N bond rotation of at least one phosphorus 

substituent, resulting in poor stereoselectivity. On the other hand, the structure of 2a is rigid 

and the 1:2 adduct intermediate must adopt a less steric hindered conformation (Scheme 4). 

Somewhat surprisingly, the present work showed that the cis 1:2 adduct (23b) is apparently 
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the more stable isomer. It is speculated that the steric hindrance between the aromatic rings in 

23a and the methyl groups in 2a is higher than that in 23b owing to a folding of the five-

membered ring in 23b away from the methyl group on the mirror plane to an "envelope" 

conformation with phosphorus in the "flap" position. The greater bulk and rigidity of the 

intermediate 1:2 adduct of 2a than the analogue with 1 is thus perhaps responsible for the 

greater stereoselectivity of base 2a as shown in Table 1. However, the cause for the survival 

of the 1:2 isomeric intermediate adduct of 2a in refluxing ethanol remains unclear. 

Interestingly, the isolated cis 1:2 adduct 21b in Scheme 3 and the almost exclusively 

formed analogue 23b in Scheme 4 give rise to trans epoxide. This is best understood in terms 

of heterolytic cleavage of a P-0 bond to form a zwitterion followed by rotation about the ArC-

CAr bond and subsequent nucleophilic attack of the alkoxide oxygen on the adjacent aryl 

carbon in an SN2 fashion to give the trans product. By inference the 1:2 adducts 21a and 23a 

lead to cis epoxides. This conclusion coupled with the stereoselectivity for trans epoxide in our 

reaction supports our assignment of the cis configuration to greatly predominant 1:2 adduct 

isomer 23b. Compound 2b, a more sterically hindered analogue of 2a, was also allowed to 

react with substrates 4a 9a under the same conditions as with 2a. Surprisingly, no epoxide 

products were generated according to 'H and 3IP NMR spectroscopy. Instead, a remarkable 

color change from colorless to dark red was observed, which may be associated with a charge-

transfer complex between the aminophosphine phosphorus as the donor and the aryl aldehyde 

bearing an electron-withdrawing group as the acceptor as was postulated to form as an 

intermediate in the reaction of 1 with aryl aldehydes.6 The failure of 2b to facilitate epoxide 

formation may well be due to the steric hindrance around the phosphorus that prevents it from 

nucleophilically attacking the carbonyl group of a substrate, thus restricting the interaction to 

charge-transfer. 
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Experimental Section 

Benzene (C6H6 and C6D6), toluene, and THF were dried with sodium. CH,d, was 

dried with CaH,. All reactions were carried out under an Ar atmosphere. Chemicals employed 

were purchased from Aldrich Chemicals and were used without purification unless otherwise 

noted. Compounds 2a12 and 2b13 were prepared according to our previously published 

methods. NMR, MS (ESI) and HRMS (EI) spectroscopic measurements were performed in 

the Instrument Services Laboratory of the Chemistry Department at Iowa State University. 

General procedure for converting aryl aldehydes to epoxides with 1 or 

2a. To a solution of an aryl aldehyde (2.00 mmol) in CfiD6 (3.0 mL) at room temperature 

under an Ar atmosphere was slowly added a solution of 1 or 2a (1.05 mmol) in CfiD6 (1.5 

mL). The reaction was monitored by 'H and 3lP NMR spectroscopies. After the reaction time 

stated in Table I, a 'H NMR spectrum was recorded from which the conversion and the 

translcis ratio of the product were obtained by integration. For known compounds, these 

spectra were also compared with those recorded in the literature. The product epoxide was 

then isolated and purified by silica gel column chromatography, or filtration followed by 

washing (see Table I). The identities of the purified product were confirmed by 'H and ,3C 

NMR spectroscopies. In the case of new compounds, HRMS (EI) data are also given (see 

Supporting Information). 
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Table 1. Epoxidation of Aryl-aldehydes with 1 and 2a.' 

arylaldehyde product1" reaction work-up 
time (h) method 

%conversionsc(zrani :cis1i 

yields'{trans, cis)* 

with 2a with 1 

CHO 
95(51:49) 
81(51:49) 

col.' 
chrom. 

0.5 

,CHO 
col.I 

chrom. 
85(56:44 
50(57:43) 

100(94:6) 
55(95:5) 0J 

CHO 

col.: 
chrom. 

99(95:5) 
51(96:4) 

94(70:30) 
69(70:30) 

Oc„<? 

CHO 

II 8a 

COT 

CHO 

12a 

J3* 
Me 
14a 

I2bmv^ 

Me O X-5 

0.5 

14 

14 

14 

60 

120 

24 

col.* 
chrom. 

col.* 
chrom. 

filtra­

tion1' 

filtra­

tion11 

filtra­

tion11 

100(92:8) 
42(92:8) 

95(95:5) 
72(99:1) 

99(98:2) 
75(100:0) 

98(99:1) 
70(100:0) 

96(99:1) 
69(100:0) 

28(92:8) 
na (na) 

na° 

nap 

65(63:37) 
52(65:35) 

< 5(53:47) 
na(na) 

85(61:39 
74(69:31) 

48(63:37) 
37(72:28) 

73(52:48) 
64(52:48) 

< 2 (na) 
na (na) 

na° 

nap 

'Reactions were carried out in C6D6 or C6H6 at room temperature under Ar. "Identification was made by 

comparing lH and t3C NMR spectroscopic data with those in the references indicated. New compounds were 
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Table 1. (continued) 

fully characterized by 'H, l3C NMR and HRMS (EI) spectroscopies. 'Conversions were determined by 'H NMR 

integration of signals of the methine proton in the epoxide product to the aldehyde proton in corresponding 

reactant. *The trans.cis ratios were obtained by integrating the relevant lH NMR signals in the reaction mixture, 

or of the isolated epoxide isomer mixture (see Results and Discussion). 'Isolated yields were obtained by the 

indicated methods and purity was determined by 'H NMR spectroscopy. rSee reference 4. 'Silica gel column 

chromatography using a mixture of hexanes (95%) and ethyl acetate (5%) as the eluent. "Minami, T.; 

Matsuzaki, N.; Ohshiro, Y.; Agawa, T. J. Chem. Soc. Perkin Trans. 1, 1980, 1731. 'Clark, K. B.; 

Bhattacharyya, K.; Das, P. K.; Scaiano, J. C.; Schaap, A. P. J. Org. Chem. 1992, 57, 3706. 'See reference 

23. "Since the product is insoluble in benzene, filtration followed by washing with benzene and drying in vacuo 

was employed to give 'H NMR pure product. 1 See Supporting Information. mAldrich Library of'3C and 'H FT 

NMR spectra, 1993,1(2), 222A. Aldrich Library ofIJC and 'H FT NMR spectra, 1993,1(2), 221C. 

"D'Auria, M.; Mauriello, G. Photochem. Photobiol., 1994,606, 542. °No observable reaction. pNo epoxide 

formation was observed. 
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Supporting Information 

'H, l3C NMR and HRMS Spectroscopic Data 

Compound trans-lOb: lH NMR (CDC13): Ô 4.58 (s, 2H), 7.54-8.82 (m, 18H). l,C NMR 

(CDCl3): Ô 61.02, 122.69, 123.09, 123.47, 123.73, 126.90, 127.02, 127.05, 127.10, 

129.08, 130.28, 130.33, 130.49, 131.57, 131.67. HRMS (EI) calcd for C,0H20O 

396.151415, found 396.151402. 

Compound toms-llb: 'H NMR (CDC1,): ô 4.91 (s, 2H), 8.00-8.30 (m, 18H). l3C NMR 

(CDCIj): ô 61.78, 122.26, 122.40, 124.80, 124.93, 125.39, 125.54, 125.70, 126.34, 

127.72, 127.78, 128.42, 129.14, 130.79, 130.99, 131.36, 131.60. HRMS (EI) calcd for 

C34H20O 444.151415, found 444.152167. 
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CHAPTER 9. FACILE FORMATION OF BENZENE FROM A NOVEL 

CYCLOHEXANE DERIVATIVE 

A paper submitted to the Organic Letter 

Xiaodong Liu, Guangtao Zhang and John G. Verkade 

The observation of benzene formation from cyclohexane derivatives is rare. In one of 

the two reports we were able to find for such a transformation, cyclohexanedione dioximes 

were treated with polyphosphoric acid,1111 while the second report described the oxidative 

aromatization of substituted cyclohexanes with Pd(OAc), and Na2Cr207 in CF3C02H.llb| 

Both reactions require elevated temperatures (95-105 °C|la| and 90 °C,lb|) and provide low 

yields of corresponding aromatic product (14-35%1U| and trace to 29%|lb|) for aliphatic 

substituted cyclohexanes. Here we report that the reaction of 1 with PhC02H at room 

temperature to give benzene in 56% yield within 1 h is the first example of the aromatization 

of a cyclohexane derivative under very mild conditions. 

In view of the apparent considerable basicity of compounds of type 3,1:1 we had 

originally decided to investigate the possibility that the cyclohexane ring of 4 might be 

m 

_EL 
Me 
Ph 
CH2Ph 
Polymer 

P? 
I 1 = PR] = 2 

3 

N jfR, 

N ii 

5 4 
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forced to invert conformational!/ in the presence of a proton so that the proton would be a 

bridgehead atom that could interact simultaneously with a lone pair on each of the three 

imino nitrogens via covalent and hydrogen bonding to form a stable cationic adamantane-like 

structure. It eventually became clear, however, that the reaction of 2 with cis-1,3,5-triazi do 

cyclohexane gave the triazido derivative 1 as an isolable thermally stable Staudinger 

intermediate, rather than the expected iminophosphine 4. During the short time we had 

erroneously believed (on the basis of preliminary evidence) that the latter compound had 

been formed, we reacted this substance with acids and discovered serendipitously and quite 

surprisingly that benzene was a major product. Compound 1 is very stable to thermolytic 

decomposition to the corresponding fnj iminophosphine derivative 4 even at 100°C/0.5 Torr 

for 10 h or in refluxing toluene for 24 h. Recrystallization of 1 from hot CH3CN yielded 

colorless crystals suitable for X-ray crystallographic analysis. All three azido substituents are 

equatorial as expected, and the azido fragments have the usual £-configuration.|3b| All three 

cage moieties lie on the same side of cyclohexane ring, giving the structure a bowl-like 

appearance. The cage moieties possess pyramidal geometry around phosphorus [avg. 

Z.NgqPN^, = 108.77(7)°], but a planar conformation at the bridgehead nitrogen [avg. ACN^C 

= 119.90(14)°| for reasons we have discussed previously for analogous systems.14' The 

bridgehead-bridgehead distance of 3.1053(15) Â indicates the absence of transannular N-*P 

interaction.14' 

R3P + N3R' R3PN3R'-

A 

R3P ^R' 

N = N  

t 
•R3P=NR' + Ni (1) 

B 

The Staudinger reaction is a two-step process involving the initial electrophilic 

addition of an alkyl or aryl azide to a P"' center followed by N2 elimination from the 

intermediate phosphazide A to give the iminophosphine B in reaction I.'3' Steric hindrance at 

the P1" center does not hinder the electrophilic addition step, but it does suppress 

decomposition, since steric requirements in the four-membered ring transition state are much 
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more rigorous than those in the addition transition state.131 Donor character on the part of the 

P"' substituents stabilizes phosphazides,'31 and this factor apparently also operates in 1 to give 

it thermal stability. The unusual resistance of 1 to thermolysis may be enhanced by the 

rigidity of the cage structure which by virtue of the planar geometry around MeN nitrogens, 

maintaining a methyl group in close proximity to the phosphorus-azido linkage. 

Surprisingly, when 1 was treated with acids such as PhC02H, CH3C02H, or CF3C02H 

in CH3CN at room temperature, an exothermic reaction accompanied by the rapid formation 

of N2 (confirmed by GC-MS) and benzene (confirmed by 'H NMR and GC mass 

spectroscopies) occurred. In the case of PhC02H, benzene was provided in 56% yield (using 

toluene as a reference in the GC-MS experiment) within 1 h. Upon evaporation of the 

reaction mixture to dryness, crude [5H]*PhC02" was isolated. Upon deprotonation of this salt 

with KO'Bu in THF, the iminophosphine 5 was obtained in 40% yield after sublimation. 

Upon treatment of 5 with PhCH2CH2Br in benzene and recrystallization of the 

product, crystals of [SHJ'Br' were isolated. The molecular structure of this salt determined 

by X-ray means reveals a transannular distance of 2.859(2) Â which is suggestive of some 

transannular interaction. This tentative conclusion is mildly corroborated by the rather wide 

N^PN^ angle [112.03(9)"] although the angles around the bridgehead [119.59(18)°] confer 

an essentially planar conformation around this atom. The somewhat reduced transannulated 

distance may also be associated with steric factors that are currently obscure. 

In contrast to our observation with 1, weak acids have been reported to combine with 

phosphazides to give stable 1:1 adducts in solution,15"1 while strong acids cleave phosphazides 

to the corresponding amine and phosphine oxide.[5b| There is, however, a report describing 

the reaction of triphenylmethyl azido triphenylphosphine with acetic acid that gives N,, 

Ph3C02CCH3 and Ph3P=NH.15c| In this reaction Ph3C was postulated to be an intermediate, 

as we believe is similarly the case in our reaction (D in Scheme 1). However, in this scheme 

the carbocation facilitates proton abstraction by the product base 5 to form a C=C bond. 
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Scheme 1 

'V 'V 

// 
n 

r3b=nh 

5 

+ 1^1 + [r3p=nh2]+ 

R3P*N 
[5h]+ 

c 
NMR studies showed that 1 does not undergo decomposition in the presence of acid 

at -30°C at an observable rate, although it does protonate. Thus addition of PhC02H 

to a solution of 1 in CD3CN led to an initial dramatic upfield shift of the 3lP NMR resonance 

of the reaction mixture from 37.2 ppm to an asymptotically reached value of-11.0 ppm after 

22.4 equiv PhC02H had been added. This result strongly suggests that protonation in a 

rapidly established equilibrium is accompanied by the formation of species containing five-

coordinated phosphorus arising from transannulation in the cage moieties. At high acid 

concentration, all three cage moieties are apparently transannulated. That transannulation 

plays a role in the excellent leaving group properties exhibited by the cage moieties in 1 is 

strongly suggested by preliminary results in our laboratories on its acyclic rrw-hexamethyl 

phosphoramide analogue, which reacts about ten times slower with acid and is also 

significantly more susceptible to side reactions. 
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To better understand the mechanism of benzene formation in our reaction, we 

followed it over time by ESl-mass spectroscopy. During the reaction of 1 with PhC02H, two 

intermediates [6HV (m/z = 597) and [7H]* (m/z = 338) were detected which disappeared 

upon reaction completion, while the product [5H]* (m/z = 232) increased over time. Two 

additional species [8H]* (m/z = 541) and [9Hf (m/z = 310) were observed as minor products 

(see below). These observations give the reaction pathway in Scheme 1 further credence. 

The reaction begins with protonation of the exocyclic axial N atom, which activates N2 

elimination to give 5 and a carbocation. Then 5 serves as a base that quickly extracts a 

proton from the P carbon in the cyclohexane moiety to generate a new C=C bond. To gain 

further support for this mechanism, the proposed intermediate 6 was synthesized. When it 

was treated with PhC02H, the same products were observed as with 1. 

Scheme 2 

The formation of impurities [8Hr and [9H]+ in the reaction of 1 with PhC02H may 

result from the competitive side reaction shown in Scheme 2. After protonation, a four-

membered ring transition state E could form by rearrangement followed by evolution of N2 

to give the protonated iminophosphine F. 

Further investigations aimed at broadening the scope of these reactions and at 

applying them in organic synthesis are underway. 

c 

E F 

Experimental Section 

Compounds ll4d| and 1,3,5-czs—triazidocyclohexane161 were synthesized according to 

the literature procedures. Compounds whose syntheses are described below were 
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characterized by lH, l3C, 31P (where applicable) and mass (including high resolution and 

electrospray) spectroscopies, and elemental analyses. 

The synthesis of 1 was achieved by allowing 1,3,5-cû-triazidocyclohexane to react 

with 3 equiv of 2 in MeCN at 0°C. After stirring for 3 h and solvent evaporation, 1 was 

obtained in 92% yield after washing with ether and drying. 

The isolation and characterization of 5 was achieved by combining 1 with PhCO,H in 

a 1:4 molar ratio at 0°C. After stirring at ambient temperature for 4 h followed by solvent 

evaporation, the residue was dissolved in THF and treated with 6 equiv of KO'Bu. After 

stirring the reaction mixture at ambient temperature for 2 h, followed by solvent evaporation, 

extraction of the residue with pentane and solvent evaporation, 5 was obtained in 40% yield 

upon vacuum sublimation of the residue. Compound 5 was converted to the conjugate acid 

[5H|Br by combining equimolar amounts of 5 and PhCH,CH,Br in C6D6 at room 

temperature. After 3 h, a 99% conversion of PhCH,CH,Br to PhCH=CH, had occurred was 

determined by 'H NMR integration. The precipitate that had formed was filtered and washed 

with Et20 to give pure [5H]Br ( 90%) upon drying. 

The formation of 3,5-c/s-diazidohexa-1 -ene was observed in the present work as a 

minor product by 'H NMR spectroscopy, during the synthesis of 1,3,5-cis-

triazidocyclohexane. This mixture, when subjected to silica gel column chromatography, 

gave 3,5-c/j-diazidohexa-l-ene in 10% yield. 

The previous product was combined with 2 in a 1:2 molar ratio in MeCN at 0°C and 

the reaction mixture was allowed to stir at ambient temperature for 3 h. After evaporating the 

solvent and washing the residue with ether, 6 was obtained in 85% yield. 
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Supporting Information 

NMR, Mass Spectroscopic, Elemental analyses, and X-ray analysis Data 

1: 31P (CD3CN): ô 37.11. 'H (CD3CN): ô 1.56-1.60 (m, 6H, CH2), 2.65 (d, 27H, N„CH3, 

JPH = 7.6 Hz), 2.77 (t, 18H, N„CH2, J„H= 4.8 Hz), 2.88 (dt, 18H, N^CH,, JPH= 12.8 Hz, 3JHH= 

4.8 Hz), 3.38 (m, 3H, CH). 13C (CD3CN): ô 35.67 (d, N„CH3, Jpc= 3.5 Hz), 39.42 (s, CH,), 

50.32 (s, N^CHi), 52.27 (s, N^CH.J, 66.34 (s, CH). ESI-MS m/z: 856 (M*). HRMS m/z 

calculated for C33H72Nl6P3: 856.54894. Found: 771.53235 (M-3N2y. Elemental analysis 

calculated for C33H72N21P3: C, 46.30; H, 8.48; N, 34.36. Found: C, 46.29; H, 8.57; N, 34.07. 

5: 31P (C6D6): Ô 36.93. lH (C6D6): Ô 2.43 (t, 6H, NMCH2, JHH= 4.8 Hz), 2.58 (dt, 6H, 

N«,CH2, JPH= 12.0 Hz, 3J„h = 4.8 Hz), 2.71 (d, 9H, N„CH3, JPH = 7.6 Hz). 13C (C6D6): ô 35.58 

(d, NcqCH3, Jrc= 6.3 Hz), 49.71 (s, N„CH2), 51.57 (d, N«,CH2, Jrc= 2.3 Hz). HRMS m/z 

calculated for QH^NjP: 231.16231. Found: 231.16257 (M*). 

[SHfBr : 31P (CDCI3): ô 34.38. lH (CDCI3): ô 2.69 (t, 6H, N„CH2, JHH = 4.8 Hz), 2.82 

(m, 6H, N^CHi), 2.86 (d, 9H, N„CH3, JPH = 7.5 Hz). 13C (CDC13): ô 36.29 (d, N„CH3, Jrc = 

4.8 Hz), 49.72 (s, N^CHJ, 50.34 (d, N«,CH2, Jpc= 3.7 Hz). ESI-MS m/z: 232 (for cation). 

Elemental analysis calculated for QHyNjPBr. C, 34.63; H, 7.43; N, 22.43. Found: C, 34.66; 

H, 7.41; N, 22.11. 

3,5-cis-diazidohexa- 1-ene: 'H (CDC13): ô 1.65 (m, 1H), 2.05-2.21 (m, 1H), 2.25-2.50 (m, 

2H), 3.60-3.70 (m, IH), 4.01-4.10 (m, 1H), 5.67-5.73 (m, 1H), 5.85-5.95 (m, 1H). ,3C 

(CDC13): Ô 30.69 (s), 33.95 (s), 55.11 (s), 56.61 (s), 126.16 (s), 128.31 (s). ESI-MS m/z: 164 

(Ml. 
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6: 3lP (CDjCN): ô 37.02, 37.23. 'H (CD3CN): ô 1.60-1.77 (m, 2H), 2.00-2.10 (m, 1H), 

2.11-2.22 (m, 1H), 2.65 (d, 18H, N„CH3, JPH = 7.6 Hz), 2.77 (t, 12H, N„CH2, J„„= 4.8 Hz), 

2.90 (dt, 12H, N^CH,, JPH= 7.6 Hz, 3JHH= 4.8 Hz), 3.52-3.59 (m, 1H), 4.00-4.03 (m, 1H), 

5.52-5.54 (m, 1H), 5.71- 5.77 (m, 1H). ,3C (CD3CN): ô 31.41 (s), 34.64 (s), 35.79 (s), 49.29 

(s), 51.25 (s), 63.51 (s), 65.75 (s), 126.12 (s), 130.95 (s). ESI-MS m/z: 597 (MH+). HRMS 

m/z calculated for C24H50N14P2: 596.381816. Found: 540.37012 (M-2N;)*. 
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Figure 1. ORTEP view of 1 (30% probability thermal ellipsoids): hydrogen atoms and 

solvent molecules are omitted for clarity. Selected bond lengths [Â] and angles [°]: P(l)-

N(3) 1.6134(13), P(l)-N(4) 1.6370(13), P(l)-N(6) 1.6438(12), P(l)-N(5) 1.6491(13), P(l)-

N(7) 3.1549(14), N(l)-N(2) 1.2556(17), N(l)-C(l) 1.4721(18), N(2)-N(3) 1.3720(17); N(3)-

P(l)-N(4) 116.14(7), N(3)-P(l)-N(6) 103.05(6), N(4)-P(l)-N(6) 107.65(7), N(3)-P(l)-N(5) 

112.20(7), N(4)-P(l)-N(5) 107.33(7), N(6)-P(l)-N(5) 110.30(6), N(2)-N(l)-C(l) 110.94(12), 

N(l)-N(2)-N(3) 112.58(12), N(2)-N(3)-P(l) 113.78(10), C(15)-N(7)-C(12) 120.31(13), 

C(15)-N(7)-C(9) 120.04(13), C( 12)-N(7)-C(9) 118.94(13), N(l)-C(l)-C(6) 109.90(12), N(l)-

C(l)-C(2) 108.85(11). 
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Figure 2. ORTEP view of [5H|*Br (50% probability thermal ellipsoids). Selected bond 

lengths [Â| and angles [°]: P-N(l) 1.6257(17), P-N(2) 1.6338(18), P-N(3) 1.6326(17), P-N(4) 

1.6277(16), P-N(5) 2.852(2); N(l)-P-N(4) 104.15(8), N(l)-P-N(3) 105.98(10), N(4)-P-N(3) 

115.05(9), N(l)-P-N(2) 110.28(10), N(4)-P-N(2) 110.92(9), N(3)-P-N(2) 110.13(9), C(6)-

N(5)-C(3) 119.80(17), C(6)-N(5)-C(9) 119.88(18), C(3)-N(5)-C(9) 119.10(17). 
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CHAPTER 10. GENERAL CONCLUSION 

Concluding Remarks 

In this work, the following results have been achieved: 

(1) A new, easier and more economical method has been developed for the synthesis 

of our patented superbase PtMeNCHiCH^N la in three steps and in 68% overall yield.1 

This commercial reagent la is proving to be a versatile reagent and catalyst for an ever 

increasing number of organic transformations requiring extraordinary basicity and low 

nucleophilicity. 

(2) A series of novel highly sterically hindered azaphosphatranes 

[ZP(RNCH2CH2)3N1CF3S03 wherein Z = FT and R = SiMe^, SiEt3, SiPh3, SiPh2Me have been 

synthesized along with proazaphosphatrane lc wherein Z = Ip and R = SiMe^ Also 

described are the transformations of lc to 0=P(Me3SiNCH2CH2)3N (2a) and to 

S=P(Me3SiNCH2CH2)3N (2b). The structures of lc and 2b determined by X-ray means are 

also presented.2 Compound lc displays a bridgehead-bridgehead distance of 3.360(7) Â 

while that in 2b is 3.152(7) Â. The smaller distance in the latter by ca. 0.1 À is attributed to 

the wider NPN bond angle by ca. 5° in lc. VT 31P NMR studies revealed no evidence for 

transannulation or tautomerism in 2a. 

(3) The precursor cation HP(CH3NCH2CHi)3N* to la, which is more stable and less 

expensive, is reported herein to be an efficient procatalyst for dehydrohalogenation and also 

for the debromination of vicinal dibromides using NaH as a relatively inexpensive 

R Z R 

2a O Me3Si 

2b S Me3Si 

2c O Me 

lc o-CHi-Py 

If Ph 
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stoichiometric hydride source in CH3CN at room temperature.3 In dehydrohalogenations 

requiring more than ca. 10 h, the "CH2CN ion also acts as a base. By itself, NaH does not 

function well or at all under the same conditions. A catalytic cycle is also proposed. The 

cations HP(HNCH2CH2)3N* and HP[N(polymer)CH2CHJN(CH2CH2NHV (3) are also 

shown to function as procatalysts for the efficient dehydrohalogenation of RX and for the 

debromination of vicinal dibromides. The preparation of the heterogeneous procatalyst 3 

(OTf) is also described. 

3 R' 

(4) A facile and economical procedure for the synthesis of the C3 chiral-

phenylethylamino trisaminoamine [(5,5,5)-PhHMeCNHCH2CH2)3N in good yield is reported. 

The corresponding bicyclic proazaphosphatrane P[(S,5,5)-PhHMeCNCH2CH2]3N Id, its 

bicyclic phosphoryl derivative and its tricyclic P-protonated azaphosphatrane were also 

synthesized and characterized.4 It is found that the proazaphosphatrane is an efficient 

derivatizing agent for the direct determination of enantiomeric ratios of chiral azides by 

means of 31P and 'H NMR spectroscopy. 

(5) The compounds 4a - 4d were synthesized, among which the cation [0=P(i-

PrNCH2CH2)3CH3l* 4c features the longest distance between the bridgehead atoms (3.56 À) 

so far recorded for phosphatrane cages, despite a non-tetrahedral CNbridgeheadC angle (~114°). 

The 70.8° NbridgeheadCCN torsion angles in the bridging moieties produces a substantial twist 

along the C3 axis of the structure that does not easily allow racemization of the cage. The 

resulting rigidity of the twisted cage gives rise to AB patterns for the methylene protons of 

this cation and its analogues.5 

R R 

4a Me Me 

4b Me Et 

4c <-Pr Me 

4d i-Pr Et 



www.manaraa.com

121 

(6) The catalytic effect of a group of R3P=0 compounds has been studied in a mild 

procedure for the silylation of primary alcohols, secondary alcohols, hindered secondary 

alcohols and of hindered phenols, in the presence of /-butyldimethylsilyl chloride 

(TBDMSCl) and r-butyldiphenylsilyl chloride (TBDPSC1).6 It is found that R3P=0 is an 

efficient catalyst in such reactions when R is a good electron donating group, such as Me,N 

or M-Bu and as NMe(CH:) in N(CH2CH2NMe)3P=0. However, R3P=0 is a weak or 

ineffective catalyst when R is a poor electron donating group, such as Ph or 0-/z-Bu or as 

CHZN-0-CH2C5H4N in N(CH2CH2N-o-CH2C5H4N)3P=0. Compound 2c, synthesized by 

oxidation of commercially available N(CH2CH2NMe)3P la, displays the best catalytic 

properties for alcohol silylation in terms of efficiency, stability and safety. 

(7) In contrast to its acyclic analogue PfNMe?)], which in benzene at room 

temperature reacts with two aryl aldehyde molecules bearing electron withdrawing groups to 

give the corresponding diaryl epoxide as an isomeric mixture (translcis ratios: 72/28 - 51/49), 

P(MeNCH,CH,)3N (la) under the same reaction conditions is found to be a highly selective 

reagent that provides epoxides with translcis ratios as high as 99/1.7 These reactions are 

faster with la, because its phosphorus atom is apparently more nucleophilic than that in 

P(NMe2)3. Thus it is found that la more easily forms 1:1 and 1:2 adducts with one or two 

molecules of aldehyde, respectively. These adducts apparently are intermediates in the 

formation of the product epoxide and the corresponding phosphine oxides of P(NMeJ3 and 

la. 

(8) The dominant reaction in the decomposition of the starting material 5, an 

unusually thermally stable Staudinger intermediate, in the presence of HA is the formation of 

benzene, nitrogen and [H2N=PR3]W (6H*A ). Evidence for a transannulated cage 

intermediate is presented. A competing reaction produces the corresponding cyclohexenyl 

and the 1,3-cyclohexadienyl derivatives (7 and 8), along with nitrogen. The tris-

iminophosphine cyclohexane derivative of the starting matereial expected as a thermal 
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decomposition product was not observed to form in refluxing toluene or at 100 °C in 

vacuum.8 

Current Progress and Suggestion for Future Work 

During the past decade, there has been a steady flow of publications on phosphatrane 

chemistry from our group and there is no sign of abatement. The results presented herein are 

a small part of the total of contribution made by past and present coworkers to this 

academically and industrially exceedingly interesting and significant field. 

Currently, this author is working on the synthesis of new proazaphosphatranes with 

different R group on the in the cage moiety, aiming at structural and electronic 

modification of the basicity and ligand properties. Thus the new proazaphosphatranes le9 

and If10 have been successfully synthesized and structurally characterized. Preliminary 

results showed that both are weaker bases than la, although they have similar catalytic 

activities. 

PfNMe?)] is a well-known ligand in coordination chemistry that has provided 

hundreds of complexes for structural and reactivity studies. Since P(MeNCH2CH2)3N la is 

the bicyclic analogue of P(NMe2)3, its metal complexes could also be interesting. A few 

metal complexes (9 -11) involving la have been synthesized in this group," and their 

structural features have been elucidated. Recently, Au(I) complexes 1212 and 133 have also 

been obtained by reacting Me^SAuCOCl with one and two equivalents of la, respectively 
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(Scheme 1). The donor properties of la towards Au(I) were studied by testing its ability to 

remain coordinated in the presence of other phosphines such as P(NMe2)3 and PPh3. It was 

found that la is a better donor ligand than PCNMe^ which is better than PPh3 when 

coordinated to Au(I). 

Scheme 1 
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Another new finding is that for the first time la and lb have been found to cleave the 

C-F bonds in CF3I to give exclusively 14a and 14b, respectively, in which the transannular 

bridgehead-bridgehead bond is among the shortest found thus far. However, P(NMe%)3, the 

acyclic analogue of la in the presence of CF3I gives little or no analogous C-F cleavage 

products, 15 being formed instead under the same conditions (see Scheme 2).14 

Scheme 2 

Me2N NMe? Me2KP>,NMe2 1 

14a Me + :CF2 

14b i-Pr 

15 
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Since our proazaphosphatranes have been proving to be efficient bases/catalysts in a 

variety of useful organic transformations, immobilizing them on a polymer will be of great 

interest because of the following advantages. Polymeric reagents are easily separated which 

saves time, uses less solvent, and is therefore more environmentally benign. 

Scheme 3 
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fpolymerj > y 

In our previous work, polymer-supported azaphosphatrane 3 was synthesized from 

Merri field resin and used as a catalyst in dehydrohalogenation of organic halides with NaH.4 

However, it is found that deprotonation of 3 to its pure free base form is difficult, perhaps 

due to inefficient mass transport of the deprotonation base in the reaction resulting from 

steric bulk of polymer back-bone. Therefore, it is conceivable that an appropriate linker is 

required between the polymer back-bone and the reactive site (i.e., the phosphorus cage 

moiety). Scheme 3 shows one possible route to achieve this goal. It is noted that linkers 

with different lengths should be evaluated to obtain the optimum result. In this way, the 
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deprotonation reagent can easily access the phosphorus to liberate the free phosphorus base 

and the phosphorus will be more accessible to the reactants. 

Very recently, a novel ylide-like base 21 and its polymer-supported analogue 22 were 

synthesized and used in some N and C alkylation reactions.15 However, the synthesis and 

MeX/Me 

II 

Me2N NMei 

|polymerj 

MeiN 
NMei 

NMC2 

21 22 

reactivity of the polymer-supported base were not described in detail, which results in the 

speculation that some problems may exist, such as less reactivity and/or difficulty in the 

isolation of pure polymeric base 22. Using the same approach given in Scheme 3, various 

linkers can be used to install the reactive site well away from the steric hindrance of the 

polymer back-bone (see Scheme 4). 

Scheme 4 
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If our superbases, such as la, are converted into the ylide-like polymer-supported 

bases, high basicity is expected. It is believed that the nonnucleophilic nature of 22 is due to 

the steric bulk of the polymer back-bone.15 However, if a polymeric ylide-like base 25 in the 

Scheme 4 is more accessible, then its nucleophilicity could be enhanced to facilitate Wittig 

reactions in the presence of aldehydes or ketones. 

Although phosphatrane chemistry continues to be thoroughly and systematically 

studied for its synthetic, mechanistic, and application implications, there remain many 

fundamental questions to be answered, important properties to be studied, and new 

applications to be explored. 
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